#!/usr/bin/env python3
-
+# TODO: replace prints with logging.
+import sys
import pandas as pd
import numpy as np
from sklearn.cluster import AffinityPropagation
import fire
+from pathlib import Path
+
+def read_similarity_mat(similarities, use_threads=True):
+ df = pd.read_feather(similarities, use_threads=use_threads)
+ mat = np.array(df.drop('_subreddit',1))
+ n = mat.shape[0]
+ mat[range(n),range(n)] = 1
+ return (df._subreddit,mat)
+
+def affinity_clustering(similarities, *args, **kwargs):
+ subreddits, mat = read_similarity_mat(similarities)
+ return _affinity_clustering(mat, subreddits, *args, **kwargs)
-def affinity_clustering(similarities, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
+def _affinity_clustering(mat, subreddits, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
'''
similarities: feather file with a dataframe of similarity scores
preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author.
'''
-
- df = pd.read_feather(similarities)
- n = df.shape[0]
- mat = np.array(df.drop('_subreddit',1))
- mat[range(n),range(n)] = 1
- assert(all(np.diag(mat)==1))
+ print(f"damping:{damping}; convergenceIter:{convergence_iter}; preferenceQuantile:{preference_quantile}")
preference = np.quantile(mat,preference_quantile)
print(f"preference is {preference}")
-
print("data loaded")
-
+ sys.stdout.flush()
clustering = AffinityPropagation(damping=damping,
max_iter=max_iter,
convergence_iter=convergence_iter,
print(f"found {len(set(clusters))} clusters")
- cluster_data = pd.DataFrame({'subreddit': df.subreddit,'cluster':clustering.labels_})
+ cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
cluster_sizes = cluster_data.groupby("cluster").count()
print(f"the largest cluster has {cluster_sizes.subreddit.max()} members")
print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member")
+ sys.stdout.flush()
cluster_data.to_feather(output)
+ print(f"saved {output}")
+ return clustering
if __name__ == "__main__":
fire.Fire(affinity_clustering)