+import pandas as pd
+import plotnine as pn
+from pathlib import Path
+from clustering.fit_tsne import fit_tsne
+from visualization.tsne_vis import build_visualization
+
+df = pd.read_csv("/gscratch/comdata/output/reddit_clustering/subreddit_comment_authors-tf_10k_LSI/hdbscan/selection_data.csv",index_col=0)
+
+# plot silhouette_score as a function of isolates
+df = df.sort_values("silhouette_score")
+
+df['n_isolates'] = df.n_isolates.str.split("\n0").apply(lambda rg: int(rg[1]))
+p = pn.ggplot(df,pn.aes(x='n_isolates',y='silhouette_score')) + pn.geom_point()
+p.save("isolates_x_score.png")
+
+p = pn.ggplot(df,pn.aes(y='n_clusters',x='n_isolates',color='silhouette_score')) + pn.geom_point()
+p.save("clusters_x_isolates.png")
+
+# the best result for hdbscan seems like this one: it has a decent number of
+# i think I prefer the 'eom' clustering style because larger clusters are less likely to suffer from ommitted variables
+best_eom = df[(df.n_isolates <5000)&(df.silhouette_score>0.4)&(df.cluster_selection_method=='eom')&(df.min_cluster_size==2)].iloc[df.shape[1]]
+
+best_lsi = df[(df.n_isolates <5000)&(df.silhouette_score>0.4)&(df.cluster_selection_method=='leaf')&(df.min_cluster_size==2)].iloc[df.shape[1]]
+
+tsne_data = Path("./clustering/authors-tf_lsi850_tsne.feather")
+
+if not tnse_data.exists():
+ fit_tsne("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/850.feather",
+ tnse_data)
+
+build_visualization("./clustering/authors-tf_lsi850_tsne.feather",
+ Path(best_eom.outpath)/(best_eom['name']+'.feather'),
+ "./authors-tf_lsi850_best_eom.html")
+
+build_visualization("./clustering/authors-tf_lsi850_tsne.feather",
+ Path(best_leaf.outpath)/(best_leaf['name']+'.feather'),
+ "./authors-tf_lsi850_best_leaf.html")