]> code.communitydata.science - cdsc_reddit.git/blobdiff - similarities/similarities_helper.py
Updates to similarities code for smap project.
[cdsc_reddit.git] / similarities / similarities_helper.py
index 7f8a639aeecf255ed3db0e47f4ad14769cb5ceb4..a4983b38ef4ca6d3bb248631ce6e3d8cb7340276 100644 (file)
@@ -15,27 +15,53 @@ import numpy as np
 import pathlib
 from datetime import datetime
 from pathlib import Path
 import pathlib
 from datetime import datetime
 from pathlib import Path
+import pickle
 
 class tf_weight(Enum):
     MaxTF = 1
     Norm05 = 2
 
 
 class tf_weight(Enum):
     MaxTF = 1
     Norm05 = 2
 
-infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet"
-cache_file = "/gscratch/comdata/users/nathante/cdsc_reddit/similarities/term_tfidf_entries_bak.parquet"
-
-def termauthor_tfidf(term_tfidf_callable, author_tfidf_callable):
-    
+# infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet"
+# cache_file = "/gscratch/comdata/users/nathante/cdsc_reddit/similarities/term_tfidf_entries_bak.parquet"
 
 # subreddits missing after this step don't have any terms that have a high enough idf
 # try rewriting without merges
 
 # subreddits missing after this step don't have any terms that have a high enough idf
 # try rewriting without merges
-def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, week=None, from_date=None, to_date=None, rescale_idf=True, tf_family=tf_weight.MaxTF):
-    print("loading tfidf", flush=True)
-    tfidf_ds = ds.dataset(infile)
+
+# does reindex_tfidf, but without reindexing.
+def reindex_tfidf(*args, **kwargs):
+    df, tfidf_ds, ds_filter = _pull_or_reindex_tfidf(*args, **kwargs, reindex=True)
+
+    print("assigning names")
+    subreddit_names = tfidf_ds.to_table(filter=ds_filter,columns=['subreddit','subreddit_id'])
+    batches = subreddit_names.to_batches()
+    
+    with Pool(cpu_count()) as pool:
+        chunks = pool.imap_unordered(pull_names,batches) 
+        subreddit_names = pd.concat(chunks,copy=False).drop_duplicates()
+        subreddit_names = subreddit_names.set_index("subreddit_id")
+
+    new_ids = df.loc[:,['subreddit_id','subreddit_id_new']].drop_duplicates()
+    new_ids = new_ids.set_index('subreddit_id')
+    subreddit_names = subreddit_names.join(new_ids,on='subreddit_id').reset_index()
+    subreddit_names = subreddit_names.drop("subreddit_id",1)
+    subreddit_names = subreddit_names.sort_values("subreddit_id_new")
+    return(df, subreddit_names)
+
+def pull_tfidf(*args, **kwargs):
+    df, _, _ =  _pull_or_reindex_tfidf(*args, **kwargs, reindex=False)
+    return df
+
+def _pull_or_reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, week=None, from_date=None, to_date=None, rescale_idf=True, tf_family=tf_weight.MaxTF, reindex=True):
+    print(f"loading tfidf {infile}", flush=True)
+    if week is not None:
+        tfidf_ds = ds.dataset(infile, partitioning='hive')
+    else: 
+        tfidf_ds = ds.dataset(infile)
 
     if included_subreddits is None:
         included_subreddits = select_topN_subreddits(topN)
     else:
 
     if included_subreddits is None:
         included_subreddits = select_topN_subreddits(topN)
     else:
-        included_subreddits = set(open(included_subreddits))
+        included_subreddits = set(map(str.strip,open(included_subreddits)))
 
     ds_filter = ds.field("subreddit").isin(included_subreddits)
 
 
     ds_filter = ds.field("subreddit").isin(included_subreddits)
 
@@ -71,15 +97,20 @@ def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subre
             'relative_tf':ds.field('relative_tf').cast('float32'),
             'tf_idf':ds.field('tf_idf').cast('float32')}
 
             'relative_tf':ds.field('relative_tf').cast('float32'),
             'tf_idf':ds.field('tf_idf').cast('float32')}
 
-    tfidf_ds = ds.dataset(infile)
-
     df = tfidf_ds.to_table(filter=ds_filter,columns=projection)
 
     df = df.to_pandas(split_blocks=True,self_destruct=True)
     print("assigning indexes",flush=True)
     df = tfidf_ds.to_table(filter=ds_filter,columns=projection)
 
     df = df.to_pandas(split_blocks=True,self_destruct=True)
     print("assigning indexes",flush=True)
-    df['subreddit_id_new'] = df.groupby("subreddit_id").ngroup()
-    grouped = df.groupby(term_id)
-    df[term_id_new] = grouped.ngroup()
+    if reindex:
+        df['subreddit_id_new'] = df.groupby("subreddit_id").ngroup()
+    else:
+        df['subreddit_id_new'] = df['subreddit_id']
+
+    if reindex:
+        grouped = df.groupby(term_id)
+        df[term_id_new] = grouped.ngroup()
+    else:
+        df[term_id_new] = df[term_id]
 
     if rescale_idf:
         print("computing idf", flush=True)
 
     if rescale_idf:
         print("computing idf", flush=True)
@@ -91,26 +122,13 @@ def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subre
         else: # tf_fam = tf_weight.Norm05
             df["tf_idf"] = (0.5 + 0.5 * df.relative_tf) * df.idf
 
         else: # tf_fam = tf_weight.Norm05
             df["tf_idf"] = (0.5 + 0.5 * df.relative_tf) * df.idf
 
-    print("assigning names")
-    subreddit_names = tfidf_ds.to_table(filter=ds_filter,columns=['subreddit','subreddit_id'])
-    batches = subreddit_names.to_batches()
+    return (df, tfidf_ds, ds_filter)
 
 
-    with Pool(cpu_count()) as pool:
-        chunks = pool.imap_unordered(pull_names,batches) 
-        subreddit_names = pd.concat(chunks,copy=False).drop_duplicates()
-
-    subreddit_names = subreddit_names.set_index("subreddit_id")
-    new_ids = df.loc[:,['subreddit_id','subreddit_id_new']].drop_duplicates()
-    new_ids = new_ids.set_index('subreddit_id')
-    subreddit_names = subreddit_names.join(new_ids,on='subreddit_id').reset_index()
-    subreddit_names = subreddit_names.drop("subreddit_id",1)
-    subreddit_names = subreddit_names.sort_values("subreddit_id_new")
-    return(df, subreddit_names)
 
 def pull_names(batch):
     return(batch.to_pandas().drop_duplicates())
 
 
 def pull_names(batch):
     return(batch.to_pandas().drop_duplicates())
 
-def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, from_date=None, to_date=None, tfidf_colname='tf_idf'):
+def similarities(inpath, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, from_date=None, to_date=None, tfidf_colname='tf_idf'):
     '''
     tfidf_colname: set to 'relative_tf' to use normalized term frequency instead of tf-idf, which can be useful for author-based similarities.
     '''
     '''
     tfidf_colname: set to 'relative_tf' to use normalized term frequency instead of tf-idf, which can be useful for author-based similarities.
     '''
@@ -130,7 +148,7 @@ def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=Non
         output_feather =  Path(str(p).replace("".join(p.suffixes), ".feather"))
         output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv"))
         output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet"))
         output_feather =  Path(str(p).replace("".join(p.suffixes), ".feather"))
         output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv"))
         output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet"))
-        outfile.parent.mkdir(exist_ok=True, parents=True)
+        p.parent.mkdir(exist_ok=True, parents=True)
 
         sims.to_feather(outfile)
 
 
         sims.to_feather(outfile)
 
@@ -138,7 +156,7 @@ def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=Non
     term_id = term + '_id'
     term_id_new = term + '_id_new'
 
     term_id = term + '_id'
     term_id_new = term + '_id_new'
 
-    entries, subreddit_names = reindex_tfidf(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN,from_date=from_date,to_date=to_date)
+    entries, subreddit_names = reindex_tfidf(inpath, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN,from_date=from_date,to_date=to_date)
     mat = csr_matrix((entries[tfidf_colname],(entries[term_id_new], entries.subreddit_id_new)))
 
     print("loading matrix")        
     mat = csr_matrix((entries[tfidf_colname],(entries[term_id_new], entries.subreddit_id_new)))
 
     print("loading matrix")        
@@ -147,6 +165,7 @@ def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=Non
 
     print(f'computing similarities on mat. mat.shape:{mat.shape}')
     print(f"size of mat is:{mat.data.nbytes}",flush=True)
 
     print(f'computing similarities on mat. mat.shape:{mat.shape}')
     print(f"size of mat is:{mat.data.nbytes}",flush=True)
+    # transform this to debug term tfidf
     sims = simfunc(mat)
     del mat
 
     sims = simfunc(mat)
     del mat
 
@@ -154,7 +173,7 @@ def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=Non
         for simmat, name in sims:
             proc_sims(simmat, Path(outfile)/(str(name) + ".feather"))
     else:
         for simmat, name in sims:
             proc_sims(simmat, Path(outfile)/(str(name) + ".feather"))
     else:
-        proc_sims(simmat, outfile)
+        proc_sims(sims, outfile)
 
 def write_weekly_similarities(path, sims, week, names):
     sims['week'] = week
 
 def write_weekly_similarities(path, sims, week, names):
     sims['week'] = week
@@ -207,7 +226,7 @@ def test_lsi_sims():
 # if n_components is a list we'll return a list of similarities with different latent dimensionalities
 # if algorithm is 'randomized' instead of 'arpack' then n_iter gives the number of iterations.
 # this function takes the svd and then the column similarities of it
 # if n_components is a list we'll return a list of similarities with different latent dimensionalities
 # if algorithm is 'randomized' instead of 'arpack' then n_iter gives the number of iterations.
 # this function takes the svd and then the column similarities of it
-def lsi_column_similarities(tfidfmat,n_components=300,n_iter=10,random_state=1968,algorithm='randomized'):
+def lsi_column_similarities(tfidfmat,n_components=300,n_iter=10,random_state=1968,algorithm='randomized',lsi_model_save=None,lsi_model_load=None):
     # first compute the lsi of the matrix
     # then take the column similarities
     print("running LSI",flush=True)
     # first compute the lsi of the matrix
     # then take the column similarities
     print("running LSI",flush=True)
@@ -218,21 +237,32 @@ def lsi_column_similarities(tfidfmat,n_components=300,n_iter=10,random_state=196
     n_components = sorted(n_components,reverse=True)
     
     svd_components = n_components[0]
     n_components = sorted(n_components,reverse=True)
     
     svd_components = n_components[0]
-    svd = TruncatedSVD(n_components=svd_components,random_state=random_state,algorithm=algorithm,n_iter=n_iter)
-    mod = svd.fit(tfidfmat.T)
+    
+    if lsi_model_load is not None:
+        mod = pickle.load(open(lsi_model_load ,'rb'))
+
+    else:
+        svd = TruncatedSVD(n_components=svd_components,random_state=random_state,algorithm=algorithm,n_iter=n_iter)
+        mod = svd.fit(tfidfmat.T)
+
     lsimat = mod.transform(tfidfmat.T)
     lsimat = mod.transform(tfidfmat.T)
+    if lsi_model_save is not None:
+        pickle.dump(mod, open(lsi_model_save,'wb'))
+
+    sims_list = []
     for n_dims in n_components:
         sims = column_similarities(lsimat[:,np.arange(n_dims)])
         if len(n_components) > 1:
             yield (sims, n_dims)
         else:
             return sims
     for n_dims in n_components:
         sims = column_similarities(lsimat[:,np.arange(n_dims)])
         if len(n_components) > 1:
             yield (sims, n_dims)
         else:
             return sims
-    
 
 def column_similarities(mat):
     return 1 - pairwise_distances(mat,metric='cosine')
 
 
 def column_similarities(mat):
     return 1 - pairwise_distances(mat,metric='cosine')
 
-
+# need to rewrite this so that subreddit ids and term ids are fixed over the whole thing.
+# this affords taking the LSI similarities.
+# fill all 0s if we don't have it.
 def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
     term = term_colname
     term_id = term + '_id'
 def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
     term = term_colname
     term_id = term + '_id'
@@ -257,20 +287,21 @@ def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weig
     idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1)
 
     # collect the dictionary to make a pydict of terms to indexes
     idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1)
 
     # collect the dictionary to make a pydict of terms to indexes
-    terms = idf.select([term,'week']).distinct() # terms are distinct
+    terms = idf.select([term]).distinct() # terms are distinct
 
 
-    terms = terms.withColumn(term_id,f.row_number().over(Window.partitionBy('week').orderBy(term))) # term ids are distinct
+    terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct
 
     # make subreddit ids
 
     # make subreddit ids
-    subreddits = df.select(['subreddit','week']).distinct()
-    subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.partitionBy("week").orderBy("subreddit")))
+    subreddits = df.select(['subreddit']).distinct()
+    subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit")))
 
 
-    df = df.join(subreddits,on=['subreddit','week'])
+    # df = df.cache()
+    df = df.join(subreddits,on=['subreddit'])
 
     # map terms to indexes in the tfs and the idfs
 
     # map terms to indexes in the tfs and the idfs
-    df = df.join(terms,on=[term,'week']) # subreddit-term-id is unique
+    df = df.join(terms,on=[term]) # subreddit-term-id is unique
 
 
-    idf = idf.join(terms,on=[term,'week'])
+    idf = idf.join(terms,on=[term])
 
     # join on subreddit/term to create tf/dfs indexed by term
     df = df.join(idf, on=[term_id, term,'week'])
 
     # join on subreddit/term to create tf/dfs indexed by term
     df = df.join(idf, on=[term_id, term,'week'])
@@ -283,7 +314,7 @@ def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weig
         df = df.withColumn("tf_idf",  (0.5 + 0.5 * df.relative_tf) * df.idf)
 
     df = df.repartition(400,'subreddit','week')
         df = df.withColumn("tf_idf",  (0.5 + 0.5 * df.relative_tf) * df.idf)
 
     df = df.repartition(400,'subreddit','week')
-    dfwriter = df.write.partitionBy("week").sortBy("subreddit")
+    dfwriter = df.write.partitionBy("week")
     return dfwriter
 
 def _calc_tfidf(df, term_colname, tf_family):
     return dfwriter
 
 def _calc_tfidf(df, term_colname, tf_family):
@@ -330,7 +361,7 @@ def _calc_tfidf(df, term_colname, tf_family):
     return df
     
 
     return df
     
 
-def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
+def tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
     term = term_colname
     term_id = term + '_id'
     # aggregate counts by week. now subreddit-term is distinct
     term = term_colname
     term_id = term + '_id'
     # aggregate counts by week. now subreddit-term is distinct
@@ -339,7 +370,7 @@ def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm
 
     df = _calc_tfidf(df, term_colname, tf_family)
     df = df.repartition('subreddit')
 
     df = _calc_tfidf(df, term_colname, tf_family)
     df = df.repartition('subreddit')
-    dfwriter = df.write.sortBy("subreddit","tf")
+    dfwriter = df.write
     return dfwriter
 
 def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonsfw.csv"):
     return dfwriter
 
 def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonsfw.csv"):

Community Data Science Collective || Want to submit a patch?