]> code.communitydata.science - cdsc_reddit.git/blobdiff - clustering/umap_hdbscan_clustering.py
changes for archiving.
[cdsc_reddit.git] / clustering / umap_hdbscan_clustering.py
diff --git a/clustering/umap_hdbscan_clustering.py b/clustering/umap_hdbscan_clustering.py
deleted file mode 100644 (file)
index cf4acbb..0000000
+++ /dev/null
@@ -1,230 +0,0 @@
-from clustering_base import clustering_result, clustering_job, twoway_clustering_job
-from hdbscan_clustering import hdbscan_clustering_result
-import umap
-from grid_sweep import twoway_grid_sweep
-from dataclasses import dataclass
-import hdbscan
-from sklearn.neighbors import NearestNeighbors
-import plotnine as pn
-import numpy as np
-from itertools import product, starmap, chain
-import pandas as pd
-from multiprocessing import cpu_count
-import fire
-
-def test_select_hdbscan_clustering():
-    # select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
-    #                           "test_hdbscan_author30k",
-    #                           min_cluster_sizes=[2],
-    #                           min_samples=[1,2],
-    #                           cluster_selection_epsilons=[0,0.05,0.1,0.15],
-    #                           cluster_selection_methods=['eom','leaf'],
-    #                           lsi_dimensions='all')
-    inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI"
-    outpath = "test_umap_hdbscan_lsi"
-    min_cluster_sizes=[2,3,4]
-    min_samples=[1,2,3]
-    cluster_selection_epsilons=[0,0.1,0.3,0.5]
-    cluster_selection_methods=[1]
-    lsi_dimensions='all'
-    n_neighbors = [5,10,15,25,35,70,100]
-    learning_rate = [0.1,0.5,1,2]
-    min_dist = [0.5,1,1.5,2]
-    local_connectivity = [1,2,3,4,5]
-
-    hdbscan_params = {"min_cluster_sizes":min_cluster_sizes, "min_samples":min_samples, "cluster_selection_epsilons":cluster_selection_epsilons, "cluster_selection_methods":cluster_selection_methods}
-    umap_params = {"n_neighbors":n_neighbors, "learning_rate":learning_rate, "min_dist":min_dist, "local_connectivity":local_connectivity}
-    gs = umap_hdbscan_grid_sweep(inpath, "all", outpath, hdbscan_params,umap_params)
-
-    # gs.run(20)
-    # gs.save("test_hdbscan/lsi_sweep.csv")
-
-
-    # job1 = hdbscan_lsi_job(infile=inpath, outpath=outpath, name="test", lsi_dims=500, min_cluster_size=2, min_samples=1,cluster_selection_epsilon=0,cluster_selection_method='eom')
-    # job1.run()
-    # print(job1.get_info())
-
-    # df = pd.read_csv("test_hdbscan/selection_data.csv")
-    # test_select_hdbscan_clustering()
-    # check_clusters = pd.read_feather("test_hdbscan/500_2_2_0.1_eom.feather")
-    # silscores = pd.read_feather("test_hdbscan/silhouette_samples500_2_2_0.1_eom.feather")
-    # c = check_clusters.merge(silscores,on='subreddit')#    fire.Fire(select_hdbscan_clustering)
-class umap_hdbscan_grid_sweep(twoway_grid_sweep):
-    def __init__(self,
-                 inpath,
-                 outpath,
-                 umap_params,
-                 hdbscan_params):
-
-        super().__init__(umap_hdbscan_job, inpath, outpath, self.namer, umap_params, hdbscan_params)
-
-    def namer(self,
-              min_cluster_size,
-              min_samples,
-              cluster_selection_epsilon,
-              cluster_selection_method,
-              n_components,
-              n_neighbors,
-              learning_rate,
-              min_dist,
-              local_connectivity,
-              densmap
-              ):
-        return f"mcs-{min_cluster_size}_ms-{min_samples}_cse-{cluster_selection_epsilon}_csm-{cluster_selection_method}_nc-{n_components}_nn-{n_neighbors}_lr-{learning_rate}_md-{min_dist}_lc-{local_connectivity}_dm-{densmap}"
-
-@dataclass
-class umap_hdbscan_clustering_result(hdbscan_clustering_result):
-    n_components:int
-    n_neighbors:int
-    learning_rate:float
-    min_dist:float
-    local_connectivity:int
-    densmap:bool
-
-class umap_hdbscan_job(twoway_clustering_job):
-    def __init__(self, infile, outpath, name,
-                 umap_args = {"n_components":2,"n_neighbors":15, "learning_rate":1, "min_dist":1, "local_connectivity":1,'densmap':False},
-                 hdbscan_args = {"min_cluster_size":2, "min_samples":1, "cluster_selection_epsilon":0, "cluster_selection_method":'eom'},
-                 *args,
-                 **kwargs):
-        super().__init__(infile,
-                         outpath,
-                         name,
-                         call1=umap_hdbscan_job._umap_embedding,
-                         call2=umap_hdbscan_job._hdbscan_clustering,
-                         args1=umap_args,
-                         args2=hdbscan_args,
-                         *args,
-                         **kwargs
-                         )
-
-        self.n_components = umap_args['n_components']
-        self.n_neighbors = umap_args['n_neighbors']
-        self.learning_rate = umap_args['learning_rate']
-        self.min_dist = umap_args['min_dist']
-        self.local_connectivity = umap_args['local_connectivity']
-        self.densmap = umap_args['densmap']
-        self.min_cluster_size = hdbscan_args['min_cluster_size']
-        self.min_samples = hdbscan_args['min_samples']
-        self.cluster_selection_epsilon = hdbscan_args['cluster_selection_epsilon']
-        self.cluster_selection_method = hdbscan_args['cluster_selection_method']
-
-    def after_run(self):
-        coords = self.step1.embedding_
-        self.cluster_data['x'] = coords[:,0]
-        self.cluster_data['y'] = coords[:,1]
-        super().after_run()
-
-
-    def _umap_embedding(mat, **umap_args):
-        print(f"running umap embedding. umap_args:{umap_args}")
-        umapmodel = umap.UMAP(metric='precomputed', **umap_args)
-        umapmodel = umapmodel.fit(mat)
-        return umapmodel
-
-    def _hdbscan_clustering(mat, umapmodel, **hdbscan_args):
-        print(f"running hdbascan clustering. hdbscan_args:{hdbscan_args}")
-        
-        umap_coords = umapmodel.transform(mat)
-
-        clusterer = hdbscan.HDBSCAN(metric='euclidean',
-                                    core_dist_n_jobs=cpu_count(),
-                                    **hdbscan_args
-                                    )
-    
-        clustering = clusterer.fit(umap_coords)
-    
-        return(clustering)
-
-    def get_info(self):
-        result = super().get_info()
-        self.result = umap_hdbscan_clustering_result(**result.__dict__,
-                                                     min_cluster_size=self.min_cluster_size,
-                                                     min_samples=self.min_samples,
-                                                     cluster_selection_epsilon=self.cluster_selection_epsilon,
-                                                     cluster_selection_method=self.cluster_selection_method,
-                                                     n_components = self.n_components,
-                                                     n_neighbors = self.n_neighbors,
-                                                     learning_rate = self.learning_rate,
-                                                     min_dist = self.min_dist,
-                                                     local_connectivity=self.local_connectivity,
-                                                     densmap=self.densmap
-                                                     )
-        return self.result
-
-def run_umap_hdbscan_grid_sweep(savefile, inpath, outpath, n_neighbors = [15], n_components=[2], learning_rate=[1], min_dist=[1], local_connectivity=[1],
-                                densmap=[False],
-                                min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom']):
-    """Run umap + hdbscan clustering once or more with different parameters.
-    
-    Usage:
-    umap_hdbscan_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --n_neighbors=<csv> --learning_rate=<csv> --min_dist=<csv> --local_connectivity=<csv> --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=<csv "eom"|"leaf">
-
-    Keword arguments:
-    savefile: path to save the metadata and diagnostics 
-    inpath: path to feather data containing a labeled matrix of subreddit similarities.
-    outpath: path to output fit kmeans clusterings.
-    n_neighbors: umap parameter takes integers greater than 1
-    learning_rate: umap parameter takes positive real values
-    min_dist: umap parameter takes positive real values
-    local_connectivity: umap parameter takes positive integers
-    min_cluster_sizes: one or more integers indicating the minumum cluster size
-    min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
-    cluster_selection_epsilon: one or more similarity thresholds for transition from dbscan to hdbscan
-    cluster_selection_method: "eom" or "leaf" eom gives larger clusters. 
-    """    
-    
-    umap_args = {'n_neighbors':list(map(int, n_neighbors)),
-                 'learning_rate':list(map(float,learning_rate)),
-                 'min_dist':list(map(float,min_dist)),
-                 'local_connectivity':list(map(int,local_connectivity)),
-                 'n_components':list(map(int, n_components)),
-                 'densmap':list(map(bool,densmap))
-                 }
-
-    hdbscan_args = {'min_cluster_size':list(map(int,min_cluster_sizes)),
-                    'min_samples':list(map(int,min_samples)),
-                    'cluster_selection_epsilon':list(map(float,cluster_selection_epsilons)),
-                    'cluster_selection_method':cluster_selection_methods}
-
-    obj = umap_hdbscan_grid_sweep(inpath,
-                                  outpath,
-                                  umap_args,
-                                  hdbscan_args)
-    obj.run(cores=10)
-    obj.save(savefile)
-
-    
-def KNN_distances_plot(mat,outname,k=2):
-    nbrs = NearestNeighbors(n_neighbors=k,algorithm='auto',metric='precomputed').fit(mat)
-    distances, indices = nbrs.kneighbors(mat)
-    d2 = distances[:,-1]
-    df = pd.DataFrame({'dist':d2})
-    df = df.sort_values("dist",ascending=False)
-    df['idx'] = np.arange(0,d2.shape[0]) + 1
-    p = pn.qplot(x='idx',y='dist',data=df,geom='line') + pn.scales.scale_y_continuous(minor_breaks = np.arange(0,50)/50,
-                                                                                      breaks = np.arange(0,10)/10)
-    p.save(outname,width=16,height=10)
-    
-def make_KNN_plots():
-    similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10k.feather"
-    subreddits, mat = read_similarity_mat(similarities)
-    mat = sim_to_dist(mat)
-
-    KNN_distances_plot(mat,k=2,outname='terms_knn_dist2.png')
-
-    similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10k.feather"
-    subreddits, mat = read_similarity_mat(similarities)
-    mat = sim_to_dist(mat)
-    KNN_distances_plot(mat,k=2,outname='authors_knn_dist2.png')
-
-    similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k.feather"
-    subreddits, mat = read_similarity_mat(similarities)
-    mat = sim_to_dist(mat)
-    KNN_distances_plot(mat,k=2,outname='authors-tf_knn_dist2.png')
-
-if __name__ == "__main__":
-    fire.Fire(run_umap_hdbscan_grid_sweep)
-    
-#    test_select_hdbscan_clustering()
-    #fire.Fire(select_hdbscan_clustering)  

Community Data Science Collective || Want to submit a patch?