]> code.communitydata.science - cdsc_reddit.git/blobdiff - visualization/tsne_vis.py
changes for archiving.
[cdsc_reddit.git] / visualization / tsne_vis.py
diff --git a/visualization/tsne_vis.py b/visualization/tsne_vis.py
deleted file mode 100644 (file)
index eb6a6be..0000000
+++ /dev/null
@@ -1,187 +0,0 @@
-import pyarrow
-import altair as alt
-alt.data_transformers.disable_max_rows()
-alt.data_transformers.enable('default')
-from sklearn.neighbors import NearestNeighbors
-import pandas as pd
-from numpy import random
-import fire
-import numpy as np
-
-def base_plot(plot_data):
-
-#    base = base.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
-
-    cluster_dropdown = alt.binding_select(options=[str(c) for c in sorted(set(plot_data.cluster))])
-
-    #    subreddit_dropdown = alt.binding_select(options=sorted(plot_data.subreddit))
-
-    cluster_click_select = alt.selection_single(on='click',fields=['cluster'], bind=cluster_dropdown, name=' ')
-    # cluster_select = alt.selection_single(fields=['cluster'], bind=cluster_dropdown, name='cluster')
-    # cluster_select_and = cluster_click_select & cluster_select
-    #
-    #    subreddit_select = alt.selection_single(on='click',fields=['subreddit'],bind=subreddit_dropdown,name='subreddit_click')
-    
-    base_scale = alt.Scale(scheme={"name":'category10',
-                                   "extent":[0,100],
-                                   "count":10})
-
-    color = alt.condition(cluster_click_select ,
-                          alt.Color(field='color',type='nominal',scale=base_scale),
-                          alt.value("lightgray"))
-  
-    
-    base = alt.Chart(plot_data).mark_text().encode(
-        alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
-        alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
-        color=color,
-        text='subreddit')
-
-    base = base.add_selection(cluster_click_select)
-
-    return base
-
-def zoom_plot(plot_data):
-    chart = base_plot(plot_data)
-
-    chart = chart.interactive()
-    chart = chart.properties(width=1275,height=800)
-
-    return chart
-
-def viewport_plot(plot_data):
-    selector1 = alt.selection_interval(encodings=['x','y'],init={'x':(-65,65),'y':(-65,65)})
-    selectorx2 = alt.selection_interval(encodings=['x'],init={'x':(30,40)})
-    selectory2 = alt.selection_interval(encodings=['y'],init={'y':(-20,0)})
-
-    base = base_plot(plot_data)
-
-    viewport = base.mark_point(fillOpacity=0.2,opacity=0.2).encode(
-        alt.X('x',axis=alt.Axis(grid=False)),
-        alt.Y('y',axis=alt.Axis(grid=False)),
-    )
-   
-    viewport = viewport.properties(width=600,height=400)
-
-    viewport1 = viewport.add_selection(selector1)
-
-    viewport2 = viewport.encode(
-        alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1)),
-        alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1))
-    )
-
-    viewport2 = viewport2.add_selection(selectorx2)
-    viewport2 = viewport2.add_selection(selectory2)
-
-    sr = base.encode(alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectorx2)),
-                     alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectory2))
-    )
-
-
-    sr = sr.properties(width=1275,height=600)
-
-
-    chart = (viewport1 | viewport2) & sr
-
-
-    return chart
-
-def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4):
-    isolate_color = 101
-
-    cluster_sizes = clusters.groupby('cluster').count()
-    singletons = set(cluster_sizes.loc[cluster_sizes.subreddit == 1].reset_index().cluster)
-
-    tsne_data = tsne_data.merge(clusters,on='subreddit')
-    
-    centroids = tsne_data.groupby('cluster').agg({'x':np.mean,'y':np.mean})
-
-    color_ids = np.arange(n_colors)
-
-    distances = np.empty(shape=(centroids.shape[0],centroids.shape[0]))
-
-    groups = tsne_data.groupby('cluster')
-    
-    points = np.array(tsne_data.loc[:,['x','y']])
-    centers = np.array(centroids.loc[:,['x','y']])
-
-    # point x centroid
-    point_center_distances = np.linalg.norm((points[:,None,:] - centers[None,:,:]),axis=-1)
-    
-    # distances is cluster x point
-    for gid, group in groups:
-        c_dists = point_center_distances[group.index.values,:].min(axis=0)
-        distances[group.cluster.values[0],] = c_dists        
-
-    # nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(centroids) 
-    # distances, indices = nbrs.kneighbors()
-
-    nearest = distances.argpartition(n_neighbors,0)
-    indices = nearest[:n_neighbors,:].T
-    # neighbor_distances = np.copy(distances)
-    # neighbor_distances.sort(0)
-    # neighbor_distances = neighbor_distances[0:n_neighbors,:]
-    
-    # nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances) 
-    # distances, indices = nbrs.kneighbors()
-
-    color_assignments = np.repeat(-1,len(centroids))
-
-    for i in range(len(centroids)):
-        if (centroids.iloc[i].name == -1) or (i in singletons):
-            color_assignments[i] = isolate_color
-        else:
-            knn = indices[i]
-            knn_colors = color_assignments[knn]
-            available_colors = color_ids[list(set(color_ids) - set(knn_colors))]
-
-            if(len(available_colors) > 0):
-                color_assignments[i] = available_colors[0]
-            else:
-                raise Exception("Can't color this many neighbors with this many colors")
-
-    centroids = centroids.reset_index()
-    colors = centroids.loc[:,['cluster']]
-    colors['color'] = color_assignments
-
-    tsne_data = tsne_data.merge(colors,on='cluster')
-    return(tsne_data)
-
-def build_visualization(tsne_data, clusters, output):
-
-    # tsne_data = "/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather"
-    # clusters = "/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather"
-
-    tsne_data = pd.read_feather(tsne_data)
-    tsne_data = tsne_data.rename(columns={'_subreddit':'subreddit'})
-    clusters = pd.read_feather(clusters)
-
-    tsne_data = assign_cluster_colors(tsne_data,clusters,10,8)
-
-    sr_per_cluster = tsne_data.groupby('cluster').subreddit.count().reset_index()
-    sr_per_cluster = sr_per_cluster.rename(columns={'subreddit':'cluster_size'})
-
-    tsne_data = tsne_data.merge(sr_per_cluster,on='cluster')
-
-    term_zoom_plot = zoom_plot(tsne_data)
-
-    term_zoom_plot.save(output)
-
-    term_viewport_plot = viewport_plot(tsne_data)
-
-    term_viewport_plot.save(output.replace(".html","_viewport.html"))
-
-if __name__ == "__main__":
-    fire.Fire(build_visualization)
-
-# commenter_data = pd.read_feather("tsne_author_fit.feather")
-# clusters = pd.read_feather('author_3000_clusters.feather')
-# commenter_data = assign_cluster_colors(commenter_data,clusters,10,8)
-# commenter_zoom_plot = zoom_plot(commenter_data)
-# commenter_viewport_plot = viewport_plot(commenter_data)
-# commenter_zoom_plot.save("subreddit_commenters_tsne_3000.html")
-# commenter_viewport_plot.save("subreddit_commenters_tsne_3000_viewport.html")
-
-# chart = chart.properties(width=10000,height=10000)
-# chart.save("test_tsne_whole.svg")

Community Data Science Collective || Want to submit a patch?