+#!/usr/bin/env python3
import fire
import pandas as pd
from pathlib import Path
import shutil
-
-selection_data="/gscratch/comdata/output/reddit_clustering/subreddit_comment_authors-tf_10k_LSI/affinity/selection_data.csv"
+selection_data="/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/clustering/comment_authors_compex_LSI/selection_data.csv"
outpath = 'test_best.feather'
+min_clusters=50; max_isolates=7500; min_cluster_size=2
# pick the best clustering according to silhouette score subject to contraints
-def pick_best_clustering(selection_data, output, min_clusters, max_isolates):
+def pick_best_clustering(selection_data, output, min_clusters, max_isolates, min_cluster_size):
df = pd.read_csv(selection_data,index_col=0)
- df = df.sort_values("silhouette_score")
+ df = df.sort_values("silhouette_score",ascending=False)
# not sure I fixed the bug underlying this fully or not.
df['n_isolates_str'] = df.n_isolates.str.strip("[]")
df.loc[df.n_isolates_0,'n_isolates'] = 0
df.loc[~df.n_isolates_0,'n_isolates'] = df.loc[~df.n_isolates_0].n_isolates_str.apply(lambda l: int(l))
- best_cluster = df[(df.n_isolates <= max_isolates)&(df.n_clusters >= min_clusters)].iloc[df.shape[1]]
+ best_cluster = df[(df.n_isolates <= max_isolates)&(df.n_clusters >= min_clusters)&(df.min_cluster_size==min_cluster_size)]
+
+ best_cluster = best_cluster.iloc[0]
+ best_lsi_dimensions = best_cluster.lsi_dimensions
print(best_cluster.to_dict())
best_path = Path(best_cluster.outpath) / (str(best_cluster['name']) + ".feather")
-
shutil.copy(best_path,output)
-
+ print(f"lsi dimensions:{best_lsi_dimensions}")
+
if __name__ == "__main__":
fire.Fire(pick_best_clustering)