]> code.communitydata.science - cdsc_reddit.git/blobdiff - clustering/Makefile
changes for archiving.
[cdsc_reddit.git] / clustering / Makefile
index d09cfd9bce18059287fb991d16009f940c96ff4d..7ecefcd4b59de07bf9fa8aa8783f2d9ec4c3d80e 100644 (file)
@@ -1,76 +1,36 @@
-#srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28'
-srun_singularity=source /gscratch/comdata/users/nathante/cdsc_reddit/bin/activate && srun_singularity.sh
-similarity_data=/gscratch/comdata/output/reddit_similarity
-clustering_data=/gscratch/comdata/output/reddit_clustering
-kmeans_selection_grid="--max_iter=3000 --n_init=[10] --n_clusters=[100,500,1000,1500,2000,2500,3000,2350,3500,3570,4000]"
-#selection_grid="--max_iter=3000 --convergence_iter=[15] --preference_quantile=[0.5] --damping=[0.99]"
-all:$(clustering_data)/subreddit_comment_authors_10k/kmeans/selection_data.csv $(clustering_data)/subreddit_comment_authors-tf_10k/kmeans/selection_data.csv $(clustering_data)/subreddit_comment_terms_10k/kmeans/selection_data.csv $(clustering_data)/subreddit_comment_terms_10k/affinity/selection_data.csv $(clustering_data)/subreddit_comment_authors_10k/affinity/selection_data.csv $(clustering_data)/subreddit_comment_authors-tf_10k/affinity/selection_data.csv
-# $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS $(clustering_data)/subreddit_authors-tf_similarities_30k.feather/SUCCESS
-# $(clustering_data)/subreddit_comment_terms_30k.feather/SUCCESS
+srun_singularity=srun -p compute-bigmem -A comdata --time=48:00:00 --mem=362G -c 40 /bin/bash -c 
+similarity_data=../../data/reddit_similarity
+clustering_data=../../data/reddit_clustering
+kmeans_selection_grid=--max_iters=[3000] --n_inits=[10] --n_clusters=[100,500,1000,1250,1500,1750,2000]
+hdbscan_selection_grid=--min_cluster_sizes=[2,3,4,5] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf]
+affinity_selection_grid=--dampings=[0.5,0.6,0.7,0.8,0.95,0.97,0.99] --preference_quantiles=[0.1,0.3,0.5,0.7,0.9] --convergence_iters=[15]
 
-$(clustering_data)/subreddit_comment_authors_10k/kmeans/selection_data.csv:selection.py $(similarity_data)/subreddit_comment_authors_10k.feather clustering.py
-       $(srun_singularity) python3 selection.py kmeans $(similarity_data)/subreddit_comment_authors_10k.feather $(clustering_data)/subreddit_comment_authors_10k/kmeans $(clustering_data)/subreddit_comment_authors_10k/kmeans/selection_data.csv $(kmeans_selection_grid)
+authors_tf_10k_input_lsi=$(similarity_data)/subreddit_comment_authors-tf_10k_LSI
+authors_tf_10k_output_lsi=$(clustering_data)/subreddit_comment_authors-tf_10k_LSI
 
-$(clustering_data)/subreddit_comment_terms_10k/kmeans/selection_data.csv:selection.py $(similarity_data)/subreddit_comment_terms_10k.feather clustering.py
-       $(srun_singularity) python3 selection.py kmeans $(similarity_data)/subreddit_comment_terms_10k.feather $(clustering_data)/subreddit_comment_terms_10k/kmeans  $(clustering_data)/subreddit_comment_terms_10k/kmeans/selection_data.csv $(kmeans_selection_grid)
+all:authors_tf_10k_lsi
 
-$(clustering_data)/subreddit_comment_authors-tf_10k/kmeans/selection_data.csv:clustering.py $(similarity_data)/subreddit_comment_authors-tf_10k.feather
-       $(srun_singularity) python3 selection.py kmeans $(similarity_data)/subreddit_comment_authors-tf_10k.feather $(clustering_data)/subreddit_comment_authors-tf_10k/kmeans  $(clustering_data)/subreddit_comment_authors-tf_10k/kmeans/selection_data.csv $(kmeans_selection_grid)
+authors_tf_10k_lsi:${authors_tf_10k_output_lsi}/kmeans/selection_data.csv ${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv ${authors_tf_10k_output_lsi}/affinity/selection_data.csv
 
+## LSI Models
+${authors_tf_10k_output_lsi}/kmeans/selection_data.csv:clustering.py ${authors_tf_10k_input_lsi} clustering_base.py kmeans_clustering.py
+       $(srun_singularity) -c "source ~/.bashrc; python3 kmeans_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/kmeans --savefile=${authors_tf_10k_output_lsi}/kmeans/selection_data.csv $(kmeans_selection_grid)"
 
-affinity_selection_grid="--max_iter=3000 --convergence_iter=[15] --preference_quantile=[0.5] --damping=[0.99]"
-$(clustering_data)/subreddit_comment_authors_10k/affinity/selection_data.csv:selection.py $(similarity_data)/subreddit_comment_authors_10k.feather clustering.py
-       $(srun_singularity) python3 selection.py affinity $(similarity_data)/subreddit_comment_authors_10k.feather $(clustering_data)/subreddit_comment_authors_10k/affinity $(clustering_data)/subreddit_comment_authors_10k/affinity/selection_data.csv $(affinity_selection_grid) -J 20
+${authors_tf_10k_output_lsi}/affinity/selection_data.csv:clustering.py ${authors_tf_10k_input_lsi} clustering_base.py affinity_clustering.py
+       $(srun_singularity) -c "source ~/.bashrc; python3 affinity_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/affinity --savefile=${authors_tf_10k_output_lsi}/affinity/selection_data.csv $(affinity_selection_grid)"
 
-$(clustering_data)/subreddit_comment_terms_10k/affinity/selection_data.csv:selection.py $(similarity_data)/subreddit_comment_terms_10k.feather clustering.py
-       $(srun_singularity) python3 selection.py affinity $(similarity_data)/subreddit_comment_terms_10k.feather $(clustering_data)/subreddit_comment_terms_10k/affinity  $(clustering_data)/subreddit_comment_terms_10k/affinity/selection_data.csv $(affinity_selection_grid) -J 20 
+${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv:clustering.py ${authors_tf_10k_input_lsi} clustering_base.py hdbscan_clustering.py
+       $(srun_singularity) -c "source ~/.bashrc; python3 hdbscan_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/hdbscan --savefile=${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv $(hdbscan_selection_grid)"
 
-$(clustering_data)/subreddit_comment_authors-tf_10k/affinity/selection_data.csv:clustering.py $(similarity_data)/subreddit_comment_authors-tf_10k.feather
-       $(srun_singularity) python3 selection.py affinity $(similarity_data)/subreddit_comment_authors-tf_10k.feather $(clustering_data)/subreddit_comment_authors-tf_10k/affinity  $(clustering_data)/subreddit_comment_authors-tf_10k/affinity/selection_data.csv $(affinity_selection_grid) -J 20
+${authors_tf_10k_output_lsi}/best_hdbscan.feather:${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv pick_best_clustering.py
+       $(srun_singularity) -c "source ~/.bashrc; python3 pick_best_clustering.py $< $@ --min_clusters=50 --max_isolates=5000 --min_cluster_size=2"
 
-clean:
-       rm -f $(clustering_data)/subreddit_comment_authors-tf_10k/affinity/selection_data.csv
-       rm -f $(clustering_data)/subreddit_comment_authors_10k/affinity/selection_data.csv
-       rm -f $(clustering_data)/subreddit_comment_terms_10k/affinity/selection_data.csv
-       rm -f $(clustering_data)/subreddit_comment_authors-tf_10k/kmeans/selection_data.csv
-       rm -f $(clustering_data)/subreddit_comment_authors_10k/kmeans/selection_data.csv
-       rm -f $(clustering_data)/subreddit_comment_terms_10k/kmeans/selection_data.csv
-
-PHONY: clean
-
-# $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS:selection.py $(similarity_data)/subreddit_comment_authors_30k.feather clustering.py
-#      $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors_30k.feather $(clustering_data)/subreddit_comment_authors_30k $(selection_grid) -J 10 && touch $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS
-
-# $(clustering_data)/subreddit_comment_terms_30k.feather/SUCCESS:selection.py $(similarity_data)/subreddit_comment_terms_30k.feather clustering.py
-#      $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_terms_30k.feather $(clustering_data)/subreddit_comment_terms_30k $(selection_grid) -J 10 && touch $(clustering_data)/subreddit_comment_terms_30k.feather/SUCCESS
-
-# $(clustering_data)/subreddit_authors-tf_similarities_30k.feather/SUCCESS:clustering.py $(similarity_data)/subreddit_comment_authors-tf_30k.feather
-#      $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors-tf_30k.feather $(clustering_data)/subreddit_comment_authors-tf_30k $(selection_grid) -J 8 && touch $(clustering_data)/subreddit_authors-tf_similarities_30k.feather/SUCCESS
-
-
-# $(clustering_data)/subreddit_comment_authors_100k.feather:clustering.py $(similarity_data)/subreddit_comment_authors_100k.feather
-#       $(srun_singularity) python3 clustering.py $(similarity_data)/subreddit_comment_authors_100k.feather $(clustering_data)/subreddit_comment_authors_100k.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85
-
-# $(clustering_data)/comment_terms_100k.feather:clustering.py $(similarity_data)/subreddit_comment_terms_100k.feather
-#      $(srun_singularity) python3 clustering.py $(similarity_data)/comment_terms_10000.feather $(clustering_data)/comment_terms_10000.feather ---max_iter=1000 --convergence_iter=15 --preference_quantile=0.9 --damping=0.5
+${authors_tf_10k_input_lsi}:
+       $(MAKE) -C ../similarities
 
-# $(clustering_data)/subreddit_comment_author-tf_100k.feather:clustering.py $(similarity_data)/subreddit_comment_author-tf_100k.feather
-#      $(srun_singularity) python3 clustering.py $(similarity_data)/subreddit_comment_author-tf_100k.parquet $(clustering_data)/subreddit_comment_author-tf_100k.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.5 --damping=0.85
-
-
-# it's pretty difficult to get a result that isn't one huge megacluster. A sign that it's bullcrap
-# /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
-#      ./clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.9 --damping=0.85
-
-# /gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
-
-#      start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet --output=/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather
-
-
-# /gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
-
-#      python3 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather --output=/gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather
+clean:
+       rm -f ${authors_tf_10k_output_lsi}/affinity/selection_data.csv
+       rm -f ${authors_tf_10k_output_lsi}/kmeans/selection_data.csv
+       rm -f ${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv
 
-# /gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
-# #    $srun_cdsc python3
-#      start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --output=/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather
+PHONY: clean 

Community Data Science Collective || Want to submit a patch?