import numpy as np
def base_plot(plot_data):
+
+# base = base.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
+
+ cluster_dropdown = alt.binding_select(options=[str(c) for c in sorted(set(plot_data.cluster))])
+
+ subreddit_dropdown = alt.binding_select(options=sorted(plot_data.subreddit))
+
+ cluster_click_select = alt.selection_single(on='click,',fields=['cluster'], bind=cluster_dropdown, name=' ')
+ # cluster_select = alt.selection_single(fields=['cluster'], bind=cluster_dropdown, name='cluster')
+ # cluster_select_and = cluster_click_select & cluster_select
+ #
+ # subreddit_select = alt.selection_single(on='click',fields=['subreddit'],bind=subreddit_dropdown,name='subreddit_click')
+
+ color = alt.condition(cluster_click_select ,
+ alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')),
+ alt.value("lightgray"))
+
+
base = alt.Chart(plot_data).mark_text().encode(
alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
+ color=color,
text='subreddit')
+ base = base.add_selection(cluster_click_select)
+
+
return base
def zoom_plot(plot_data):
chart = base_plot(plot_data)
- chart = chart.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
+
chart = chart.interactive()
chart = chart.properties(width=1275,height=1000)
alt.X('x',axis=alt.Axis(grid=False)),
alt.Y('y',axis=alt.Axis(grid=False)),
)
-
+
viewport = viewport.properties(width=600,height=400)
viewport1 = viewport.add_selection(selector1)
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectory2))
)
- sr = sr.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
+
sr = sr.properties(width=1275,height=600)
distances = np.empty(shape=(centroids.shape[0],centroids.shape[0]))
groups = tsne_data.groupby('cluster')
- for centroid in centroids.itertuples():
- c_dists = groups.apply(lambda r: min(np.sqrt(np.square(centroid.x - r.x) + np.square(centroid.y-r.y))))
- distances[:,centroid.Index] = c_dists
+
+ points = np.array(tsne_data.loc[:,['x','y']])
+ centers = np.array(centroids.loc[:,['x','y']])
+
+ # point x centroid
+ point_center_distances = np.linalg.norm((points[:,None,:] - centers[None,:,:]),axis=-1)
+
+ # distances is cluster x point
+ for gid, group in groups:
+ c_dists = point_center_distances[group.index.values,:].min(axis=0)
+ distances[group.cluster.values[0],] = c_dists
# nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(centroids)
# distances, indices = nbrs.kneighbors()
- nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances)
- distances, indices = nbrs.kneighbors()
+ nearest = distances.argpartition(n_neighbors,0)
+ indices = nearest[:n_neighbors,:].T
+ # neighbor_distances = np.copy(distances)
+ # neighbor_distances.sort(0)
+ # neighbor_distances = neighbor_distances[0:n_neighbors,:]
+
+ # nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances)
+ # distances, indices = nbrs.kneighbors()
color_assignments = np.repeat(-1,len(centroids))