]> code.communitydata.science - cdsc_reddit.git/blobdiff - tf_reddit_comments.py
Improve tokenization following data. Generate author counts.
[cdsc_reddit.git] / tf_reddit_comments.py
index 010b75935e761585a87c01914b92b84c1c02d806..3596062f318a1acc458a50d49a7e6b25cf55400a 100644 (file)
@@ -7,11 +7,33 @@ from collections import Counter
 import pandas as pd
 import os
 import datetime
 import pandas as pd
 import os
 import datetime
+import re
+from nltk import wordpunct_tokenize, MWETokenizer, sent_tokenize
+from nltk.corpus import stopwords
+from nltk.util import ngrams
+import string
+from random import random
+
+# remove urls
+# taken from https://stackoverflow.com/questions/3809401/what-is-a-good-regular-expression-to-match-a-url
+urlregex = re.compile(r"[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)")
 
 # compute term frequencies for comments in each subreddit by week
 
 # compute term frequencies for comments in each subreddit by week
-def weekly_tf(partition):
+def weekly_tf(partition, mwe_pass = 'first'):
     dataset = ds.dataset(f'/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/{partition}', format='parquet')
     dataset = ds.dataset(f'/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/{partition}', format='parquet')
-    batches = dataset.to_batches(columns=['CreatedAt','subreddit','body'])
+
+    if not os.path.exists("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/"):
+        os.mkdir("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/")
+
+    if not os.path.exists("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/"):
+        os.mkdir("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/")
+
+    ngram_output = partition.replace("parquet","txt")
+
+    if os.path.exists(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}"):
+        os.remove(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}")
+    
+    batches = dataset.to_batches(columns=['CreatedAt','subreddit','body','author'])
 
     schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
                         pa.field('term', pa.string(), nullable=False),
 
     schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
                         pa.field('term', pa.string(), nullable=False),
@@ -19,6 +41,12 @@ def weekly_tf(partition):
                         pa.field('tf', pa.int64(), nullable=False)]
     )
 
                         pa.field('tf', pa.int64(), nullable=False)]
     )
 
+    author_schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
+                               pa.field('author', pa.string(), nullable=False),
+                               pa.field('week', pa.date32(), nullable=False),
+                               pa.field('tf', pa.int64(), nullable=False)]
+    )
+
     dfs = (b.to_pandas() for b in batches)
 
     def add_week(df):
     dfs = (b.to_pandas() for b in batches)
 
     def add_week(df):
@@ -36,31 +64,106 @@ def weekly_tf(partition):
 
     subreddit_weeks = groupby(rows, lambda r: (r.subreddit, r.week))
 
 
     subreddit_weeks = groupby(rows, lambda r: (r.subreddit, r.week))
 
+    mwe_tokenize = MWETokenizer().tokenize
+
+    def remove_punct(sentence):
+        new_sentence = []
+        for token in sentence:
+            new_token = ''
+            for c in token:
+                if c not in string.punctuation:
+                    new_token += c
+            if len(new_token) > 0:
+                new_sentence.append(new_token)
+        return new_sentence
+
+
+    stopWords = set(stopwords.words('english'))
+
+    # we follow the approach described in datta, phelan, adar 2017
+    def my_tokenizer(text):
+        # remove stopwords, punctuation, urls, lower case
+        # lowercase        
+        text = text.lower()
+
+        # remove urls
+        text = urlregex.sub("", text)
+
+        # sentence tokenize
+        sentences = sent_tokenize(text)
+
+        # wordpunct_tokenize
+        sentences = map(wordpunct_tokenize, sentences)
+
+        # remove punctuation
+                        
+        sentences = map(remove_punct, sentences)
+
+        # remove sentences with less than 2 words
+        sentences = filter(lambda sentence: len(sentence) > 2, sentences)
+
+        # datta et al. select relatively common phrases from the reddit corpus, but they don't really explain how. We'll try that in a second phase.
+        # they say that the extract 1-4 grams from 10% of the sentences and then find phrases that appear often relative to the original terms
+        # here we take a 10 percent sample of sentences 
+        if mwe_pass == 'first':
+            sentences = list(sentences)
+            for sentence in sentences:
+                if random() <= 0.1:
+                    grams = list(chain(*map(lambda i : ngrams(sentence,i),range(4))))
+                    with open(f'/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}','a') as gram_file:
+                        for ng in grams:
+                            gram_file.write(' '.join(ng) + '\n')
+                for token in sentence:
+                    if token not in stopWords:
+                        yield token
+
+        else:
+            # remove stopWords
+            sentences = map(lambda s: filter(lambda token: token not in stopWords, s), sentences)
+            return chain(* sentences)
+
     def tf_comments(subreddit_weeks):
         for key, posts in subreddit_weeks:
             subreddit, week = key
             tfs = Counter([])
     def tf_comments(subreddit_weeks):
         for key, posts in subreddit_weeks:
             subreddit, week = key
             tfs = Counter([])
-
+            authors = Counter([])
             for post in posts:
             for post in posts:
-                tfs.update(post.body.split())
+                tokens = my_tokenizer(post.body)
+                tfs.update(tokens)
+                authors.update([post.author])
 
             for term, tf in tfs.items():
 
             for term, tf in tfs.items():
-                yield [subreddit, term, week, tf]
-            
+                yield [True, subreddit, term, week, tf]
+
+            for author, tf in authors.items():
+                yield [False, subreddit, author, week, tf]
+
     outrows = tf_comments(subreddit_weeks)
 
     outchunksize = 10000
 
     outrows = tf_comments(subreddit_weeks)
 
     outchunksize = 10000
 
-    with pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/{partition}",schema=schema,compression='snappy',flavor='spark') as writer:
+    with pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/{partition}",schema=schema,compression='snappy',flavor='spark') as writer, pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/{partition}",schema=author_schema,compression='snappy',flavor='spark') as author_writer:
         while True:
             chunk = islice(outrows,outchunksize)
         while True:
             chunk = islice(outrows,outchunksize)
-            pddf = pd.DataFrame(chunk, columns=schema.names)
+            pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names)
+            print(pddf)
+            author_pddf = pddf.loc[pddf.is_token == False]
+            author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
+            author_pddf = author_pddf.loc[:,author_schema.names]
+            
+            pddf = pddf.loc[pddf.is_token == True, schema.names]
+
+            print(pddf)
+            print(author_pddf)
             table = pa.Table.from_pandas(pddf,schema=schema)
             table = pa.Table.from_pandas(pddf,schema=schema)
+            author_table = pa.Table.from_pandas(author_pddf,schema=author_schema)
             if table.shape[0] == 0:
                 break
             writer.write_table(table)
             if table.shape[0] == 0:
                 break
             writer.write_table(table)
-
+            author_writer.write_table(author_table)
+            
         writer.close()
         writer.close()
+        author_writer.close()
 
 
 def gen_task_list():
 
 
 def gen_task_list():

Community Data Science Collective || Want to submit a patch?