]> code.communitydata.science - cdsc_reddit.git/blobdiff - tf_comments.py
Add code for running tf-idf at the weekly level.
[cdsc_reddit.git] / tf_comments.py
old mode 100644 (file)
new mode 100755 (executable)
index 85eebec..526bac2
@@ -1,10 +1,11 @@
+#!/usr/bin/env python3
+import pandas as pd
 import pyarrow as pa
 import pyarrow.dataset as ds
 import pyarrow.parquet as pq
 from itertools import groupby, islice, chain
 import fire
 from collections import Counter
-import pandas as pd
 import os
 import datetime
 import re
@@ -21,7 +22,6 @@ urlregex = re.compile(r"[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-
 # compute term frequencies for comments in each subreddit by week
 def weekly_tf(partition, mwe_pass = 'first'):
     dataset = ds.dataset(f'/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/{partition}', format='parquet')
-
     if not os.path.exists("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/"):
         os.mkdir("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/")
 
@@ -30,11 +30,13 @@ def weekly_tf(partition, mwe_pass = 'first'):
 
     ngram_output = partition.replace("parquet","txt")
 
-    if os.path.exists(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}"):
-        os.remove(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}")
+    if mwe_pass == 'first':
+        if os.path.exists(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}"):
+            os.remove(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}")
     
     batches = dataset.to_batches(columns=['CreatedAt','subreddit','body','author'])
 
+
     schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
                         pa.field('term', pa.string(), nullable=False),
                         pa.field('week', pa.date32(), nullable=False),
@@ -64,7 +66,16 @@ def weekly_tf(partition, mwe_pass = 'first'):
 
     subreddit_weeks = groupby(rows, lambda r: (r.subreddit, r.week))
 
-    mwe_tokenize = MWETokenizer().tokenize
+    if mwe_pass != 'first':
+        mwe_dataset = pd.read_feather(f'/gscratch/comdata/users/nathante/reddit_multiword_expressions.feather')
+        mwe_dataset = mwe_dataset.sort_values(['phrasePWMI'],ascending=False)
+        mwe_phrases = list(mwe_dataset.phrase)
+        mwe_phrases = [tuple(s.split(' ')) for s in mwe_phrases]
+        mwe_tokenizer = MWETokenizer(mwe_phrases)
+        mwe_tokenize = mwe_tokenizer.tokenize
+    
+    else:
+        mwe_tokenize = MWETokenizer().tokenize
 
     def remove_punct(sentence):
         new_sentence = []
@@ -119,8 +130,11 @@ def weekly_tf(partition, mwe_pass = 'first'):
 
         else:
             # remove stopWords
+            sentences = map(mwe_tokenize, sentences)
             sentences = map(lambda s: filter(lambda token: token not in stopWords, s), sentences)
-            return chain(* sentences)
+            for sentence in sentences:
+                for token in sentence:
+                    yield token
 
     def tf_comments(subreddit_weeks):
         for key, posts in subreddit_weeks:
@@ -142,36 +156,41 @@ def weekly_tf(partition, mwe_pass = 'first'):
 
     outchunksize = 10000
 
-    with pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/{partition}",schema=schema,compression='snappy',flavor='spark') as writer, pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/{partition}",schema=author_schema,compression='snappy',flavor='spark') as author_writer:
+    with pq.ParquetWriter(f"/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/{partition}",schema=schema,compression='snappy',flavor='spark') as writer, pq.ParquetWriter(f"/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/{partition}",schema=author_schema,compression='snappy',flavor='spark') as author_writer:
+    
         while True:
+
             chunk = islice(outrows,outchunksize)
+            chunk = (c for c in chunk if c[1] is not None)
             pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names)
-            print(pddf)
-            author_pddf = pddf.loc[pddf.is_token == False]
+            author_pddf = pddf.loc[pddf.is_token == False, schema.names]
+            pddf = pddf.loc[pddf.is_token == True, schema.names]
             author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
             author_pddf = author_pddf.loc[:,author_schema.names]
-            
-            pddf = pddf.loc[pddf.is_token == True, schema.names]
-
-            print(pddf)
-            print(author_pddf)
             table = pa.Table.from_pandas(pddf,schema=schema)
             author_table = pa.Table.from_pandas(author_pddf,schema=author_schema)
-            if table.shape[0] == 0:
+            do_break = True
+
+            if table.shape[0] != 0:
+                writer.write_table(table)
+                do_break = False
+            if author_table.shape[0] != 0:
+                author_writer.write_table(author_table)
+                do_break = False
+
+            if do_break:
                 break
-            writer.write_table(table)
-            author_writer.write_table(author_table)
-            
+
         writer.close()
         author_writer.close()
 
 
-def gen_task_list():
+def gen_task_list(mwe_pass='first'):
     files = os.listdir("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/")
     with open("tf_task_list",'w') as outfile:
         for f in files:
             if f.endswith(".parquet"):
-                outfile.write(f"source python3 tf_comments.py weekly_tf {f}\n")
+                outfile.write(f"./tf_comments.py weekly_tf --mwe-pass {mwe_pass} {f}\n")
 
 if __name__ == "__main__":
     fire.Fire({"gen_task_list":gen_task_list,

Community Data Science Collective || Want to submit a patch?