+from pyspark.sql import Window
+from pyspark.sql import functions as f
+from enum import Enum
+from pyspark.mllib.linalg.distributed import CoordinateMatrix
+
+class tf_weight(Enum):
+ MaxTF = 1
+ Norm05 = 2
+
+
+def cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold):
+ term = term_colname
+ term_id = term + '_id'
+ term_id_new = term + '_id_new'
+
+ if min_df is None:
+ min_df = 0.1 * len(included_subreddits)
+
+ tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
+ tfidf = tfidf.cache()
+
+ # reset the subreddit ids
+ sub_ids = tfidf.select('subreddit_id').distinct()
+ sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
+ tfidf = tfidf.join(sub_ids,'subreddit_id')
+
+ # only use terms in at least min_df included subreddits
+ new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
+# new_count = new_count.filter(f.col('new_count') >= min_df)
+ tfidf = tfidf.join(new_count,term_id,how='inner')
+
+ # reset the term ids
+ term_ids = tfidf.select([term_id]).distinct()
+ term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
+ tfidf = tfidf.join(term_ids,term_id)
+
+ tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
+ # tfidf = tfidf.withColumnRenamed("idf","idf_old")
+ # tfidf = tfidf.withColumn("idf",f.log(25000/f.col("count")))
+ tfidf = tfidf.withColumn("tf_idf", tfidf.relative_tf * tfidf.idf)
+
+ # step 1 make an rdd of entires
+ # sorted by (dense) spark subreddit id
+ # entries = tfidf.filter((f.col('subreddit') == 'asoiaf') | (f.col('subreddit') == 'gameofthrones') | (f.col('subreddit') == 'christianity')).select(f.col("term_id_new")-1,f.col("subreddit_id_new")-1,"tf_idf").rdd
+
+ n_partitions = int(len(included_subreddits)*2 / 5)
+
+ entries = tfidf.select(f.col(term_id_new)-1,f.col("subreddit_id_new")-1,"tf_idf").rdd.repartition(n_partitions)
+
+ # put like 10 subredis in each partition
+
+ # step 2 make it into a distributed.RowMatrix
+ coordMat = CoordinateMatrix(entries)
+
+ coordMat = CoordinateMatrix(coordMat.entries.repartition(n_partitions))
+
+ # this needs to be an IndexedRowMatrix()
+ mat = coordMat.toRowMatrix()
+
+ #goal: build a matrix of subreddit columns and tf-idfs rows
+ sim_dist = mat.columnSimilarities(threshold=similarity_threshold)
+
+ return (sim_dist, tfidf)
+
+
+def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
+
+ term = term_colname
+ term_id = term + '_id'
+ # aggregate counts by week. now subreddit-term is distinct
+ df = df.filter(df.subreddit.isin(include_subs))
+ df = df.groupBy(['subreddit',term]).agg(f.sum('tf').alias('tf'))
+
+ max_subreddit_terms = df.groupby(['subreddit']).max('tf') # subreddits are unique
+ max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
+
+ df = df.join(max_subreddit_terms, on='subreddit')
+
+ df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
+
+ # group by term. term is unique
+ idf = df.groupby([term]).count()
+
+ N_docs = df.select('subreddit').distinct().count()
+
+ # add a little smoothing to the idf
+ idf = idf.withColumn('idf',f.log(N_docs/(1+f.col('count')))+1)
+
+ # collect the dictionary to make a pydict of terms to indexes
+ terms = idf.select(term).distinct() # terms are distinct
+ terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct
+
+ # make subreddit ids
+ subreddits = df.select(['subreddit']).distinct()
+ subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit")))
+
+ df = df.join(subreddits,on='subreddit')
+
+ # map terms to indexes in the tfs and the idfs
+ df = df.join(terms,on=term) # subreddit-term-id is unique
+
+ idf = idf.join(terms,on=term)
+
+ # join on subreddit/term to create tf/dfs indexed by term
+ df = df.join(idf, on=[term_id, term])
+
+ # agg terms by subreddit to make sparse tf/df vectors
+
+ if tf_family == tf_weight.MaxTF:
+ df = df.withColumn("tf_idf", df.relative_tf * df.idf)
+ else: # tf_fam = tf_weight.Norm05
+ df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)
+
+ return df
+
+