import fire
  from pathlib import Path
  from similarities_helper import similarities, column_similarities
 +from functools import partial
  
- def cosine_similarities(infile, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, from_date=None, to_date=None, tfidf_colname='tf_idf'):
+ def cosine_similarities(infile, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None, tfidf_colname='tf_idf'):
  
-     return similarities(inpath=infile, simfunc=column_similarities, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname)
+     return similarities(infile=infile, simfunc=column_similarities, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases,from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname)
  
 +# change so that these take in an input as an optional argument (for speed, but also for idf).
 +def term_cosine_similarities(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
  
-     return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet',
+ def term_cosine_similarities(outfile, infile='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet', min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
+ 
+     return cosine_similarities(infile,
                                 'term',
                                 outfile,
                                 min_df,
                                 max_df,
                                 included_subreddits,
                                 topN,
+                                exclude_phrases,
                                 from_date,
                                 to_date
                                 )
  
- def author_cosine_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None):
-     return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',
+ def author_cosine_similarities(outfile, infile='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet', min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None):
+     return cosine_similarities(infile,
                                 'author',
                                 outfile,
                                 min_df,
                                 max_df,
                                 included_subreddits,
                                 topN,
+                                exclude_phrases=False,
                                 from_date=from_date,
                                 to_date=to_date
                                 )
  
- def author_tf_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None):
-     return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',
+ def author_tf_similarities(outfile, infile='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet', min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None):
+     return cosine_similarities(infile,
                                 'author',
                                 outfile,
                                 min_df,
                                 max_df,
                                 included_subreddits,
                                 topN,
+                                exclude_phrases=False,
                                 from_date=from_date,
                                 to_date=to_date,
                                 tfidf_colname='relative_tf'
 
  import pathlib
  from datetime import datetime
  from pathlib import Path
 +import pickle
  
  class tf_weight(Enum):
      MaxTF = 1
      Norm05 = 2
  
 -infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet"
 -cache_file = "/gscratch/comdata/users/nathante/cdsc_reddit/similarities/term_tfidf_entries_bak.parquet"
 +# infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet"
 +# cache_file = "/gscratch/comdata/users/nathante/cdsc_reddit/similarities/term_tfidf_entries_bak.parquet"
  
  # subreddits missing after this step don't have any terms that have a high enough idf
  # try rewriting without merges
 -def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, week=None, from_date=None, to_date=None, rescale_idf=True, tf_family=tf_weight.MaxTF):
 -    print("loading tfidf", flush=True)
 -    tfidf_ds = ds.dataset(infile)
 +
 +# does reindex_tfidf, but without reindexing.
 +def reindex_tfidf(*args, **kwargs):
 +    df, tfidf_ds, ds_filter = _pull_or_reindex_tfidf(*args, **kwargs, reindex=True)
 +
 +    print("assigning names")
 +    subreddit_names = tfidf_ds.to_table(filter=ds_filter,columns=['subreddit','subreddit_id'])
 +    batches = subreddit_names.to_batches()
 +    
 +    with Pool(cpu_count()) as pool:
 +        chunks = pool.imap_unordered(pull_names,batches) 
 +        subreddit_names = pd.concat(chunks,copy=False).drop_duplicates()
 +        subreddit_names = subreddit_names.set_index("subreddit_id")
 +
 +    new_ids = df.loc[:,['subreddit_id','subreddit_id_new']].drop_duplicates()
 +    new_ids = new_ids.set_index('subreddit_id')
 +    subreddit_names = subreddit_names.join(new_ids,on='subreddit_id').reset_index()
 +    subreddit_names = subreddit_names.drop("subreddit_id",1)
 +    subreddit_names = subreddit_names.sort_values("subreddit_id_new")
 +    return(df, subreddit_names)
 +
 +def pull_tfidf(*args, **kwargs):
 +    df, _, _ =  _pull_or_reindex_tfidf(*args, **kwargs, reindex=False)
 +    return df
 +
 +def _pull_or_reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, week=None, from_date=None, to_date=None, rescale_idf=True, tf_family=tf_weight.MaxTF, reindex=True):
 +    print(f"loading tfidf {infile}", flush=True)
 +    if week is not None:
 +        tfidf_ds = ds.dataset(infile, partitioning='hive')
 +    else: 
 +        tfidf_ds = ds.dataset(infile)
  
      if included_subreddits is None:
          included_subreddits = select_topN_subreddits(topN)
      else:
 -        included_subreddits = set(map(str.strip,map(str.lower,open(included_subreddits))))
 +        included_subreddits = set(map(str.strip,open(included_subreddits)))
  
      ds_filter = ds.field("subreddit").isin(included_subreddits)
  
              'relative_tf':ds.field('relative_tf').cast('float32'),
              'tf_idf':ds.field('tf_idf').cast('float32')}
  
 -    tfidf_ds = ds.dataset(infile)
+ 
      df = tfidf_ds.to_table(filter=ds_filter,columns=projection)
  
      df = df.to_pandas(split_blocks=True,self_destruct=True)
      print("assigning indexes",flush=True)
 -    df['subreddit_id_new'] = df.groupby("subreddit_id").ngroup()
 -    grouped = df.groupby(term_id)
 -    df[term_id_new] = grouped.ngroup()
 +    if reindex:
 +        df['subreddit_id_new'] = df.groupby("subreddit_id").ngroup()
 +    else:
 +        df['subreddit_id_new'] = df['subreddit_id']
 +
 +    if reindex:
 +        grouped = df.groupby(term_id)
 +        df[term_id_new] = grouped.ngroup()
 +    else:
 +        df[term_id_new] = df[term_id]
  
      if rescale_idf:
          print("computing idf", flush=True)
          else: # tf_fam = tf_weight.Norm05
              df["tf_idf"] = (0.5 + 0.5 * df.relative_tf) * df.idf
  
 -    print("assigning names")
 -    subreddit_names = tfidf_ds.to_table(filter=ds_filter,columns=['subreddit','subreddit_id'])
 -    batches = subreddit_names.to_batches()
 +    return (df, tfidf_ds, ds_filter)
  
+     with Pool(cpu_count()) as pool:
+         chunks = pool.imap_unordered(pull_names,batches) 
+         subreddit_names = pd.concat(chunks,copy=False).drop_duplicates()
+ 
+     subreddit_names = subreddit_names.set_index("subreddit_id")
+     new_ids = df.loc[:,['subreddit_id','subreddit_id_new']].drop_duplicates()
+     new_ids = new_ids.set_index('subreddit_id')
+     subreddit_names = subreddit_names.join(new_ids,on='subreddit_id').reset_index()
+     subreddit_names = subreddit_names.drop("subreddit_id",1)
+     subreddit_names = subreddit_names.sort_values("subreddit_id_new")
+     return(df, subreddit_names)
  
  def pull_names(batch):
      return(batch.to_pandas().drop_duplicates())
  
 -def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, from_date=None, to_date=None, tfidf_colname='tf_idf'):
 +def similarities(inpath, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, from_date=None, to_date=None, tfidf_colname='tf_idf'):
      '''
      tfidf_colname: set to 'relative_tf' to use normalized term frequency instead of tf-idf, which can be useful for author-based similarities.
      '''
          output_feather =  Path(str(p).replace("".join(p.suffixes), ".feather"))
          output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv"))
          output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet"))
 -        outfile.parent.mkdir(exist_ok=True, parents=True)
 +        p.parent.mkdir(exist_ok=True, parents=True)
  
          sims.to_feather(outfile)
  
      term_id = term + '_id'
      term_id_new = term + '_id_new'
  
 -    entries, subreddit_names = reindex_tfidf(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN,from_date=from_date,to_date=to_date)
 +    entries, subreddit_names = reindex_tfidf(inpath, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN,from_date=from_date,to_date=to_date)
      mat = csr_matrix((entries[tfidf_colname],(entries[term_id_new], entries.subreddit_id_new)))
  
      print("loading matrix")        
  
      print(f'computing similarities on mat. mat.shape:{mat.shape}')
      print(f"size of mat is:{mat.data.nbytes}",flush=True)
-     # transform this to debug term tfidf
      sims = simfunc(mat)
      del mat
  
          for simmat, name in sims:
              proc_sims(simmat, Path(outfile)/(str(name) + ".feather"))
      else:
 -        proc_sims(simmat, outfile)
 +        proc_sims(sims, outfile)
  
  def write_weekly_similarities(path, sims, week, names):
      sims['week'] = week
  # if n_components is a list we'll return a list of similarities with different latent dimensionalities
  # if algorithm is 'randomized' instead of 'arpack' then n_iter gives the number of iterations.
  # this function takes the svd and then the column similarities of it
 -def lsi_column_similarities(tfidfmat,n_components=300,n_iter=10,random_state=1968,algorithm='randomized'):
 +def lsi_column_similarities(tfidfmat,n_components=300,n_iter=10,random_state=1968,algorithm='randomized',lsi_model_save=None,lsi_model_load=None):
      # first compute the lsi of the matrix
      # then take the column similarities
      print("running LSI",flush=True)
      n_components = sorted(n_components,reverse=True)
      
      svd_components = n_components[0]
 -    svd = TruncatedSVD(n_components=svd_components,random_state=random_state,algorithm=algorithm,n_iter=n_iter)
 -    mod = svd.fit(tfidfmat.T)
 +    
 +    if lsi_model_load is not None:
 +        mod = pickle.load(open(lsi_model_load ,'rb'))
 +
 +    else:
 +        svd = TruncatedSVD(n_components=svd_components,random_state=random_state,algorithm=algorithm,n_iter=n_iter)
 +        mod = svd.fit(tfidfmat.T)
 +
      lsimat = mod.transform(tfidfmat.T)
 +    if lsi_model_save is not None:
 +        pickle.dump(mod, open(lsi_model_save,'wb'))
 +
 +    sims_list = []
      for n_dims in n_components:
          sims = column_similarities(lsimat[:,np.arange(n_dims)])
          if len(n_components) > 1:
              yield (sims, n_dims)
          else:
              return sims
+     
  
  def column_similarities(mat):
      return 1 - pairwise_distances(mat,metric='cosine')
  
- # need to rewrite this so that subreddit ids and term ids are fixed over the whole thing.
- # this affords taking the LSI similarities.
- # fill all 0s if we don't have it.
+ 
  def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
      term = term_colname
      term_id = term + '_id'
      idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1)
  
      # collect the dictionary to make a pydict of terms to indexes
 -    terms = idf.select([term,'week']).distinct() # terms are distinct
 +    terms = idf.select([term]).distinct() # terms are distinct
  
 -    terms = terms.withColumn(term_id,f.row_number().over(Window.partitionBy('week').orderBy(term))) # term ids are distinct
 +    terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct
  
      # make subreddit ids
 -    subreddits = df.select(['subreddit','week']).distinct()
 -    subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.partitionBy("week").orderBy("subreddit")))
 +    subreddits = df.select(['subreddit']).distinct()
 +    subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit")))
  
-     # df = df.cache()
 -    df = df.join(subreddits,on=['subreddit','week'])
 +    df = df.join(subreddits,on=['subreddit'])
  
      # map terms to indexes in the tfs and the idfs
 -    df = df.join(terms,on=[term,'week']) # subreddit-term-id is unique
 +    df = df.join(terms,on=[term]) # subreddit-term-id is unique
  
 -    idf = idf.join(terms,on=[term,'week'])
 +    idf = idf.join(terms,on=[term])
  
      # join on subreddit/term to create tf/dfs indexed by term
      df = df.join(idf, on=[term_id, term,'week'])
      return df
      
  
 -def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
 +def tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
      term = term_colname
      term_id = term + '_id'
      # aggregate counts by week. now subreddit-term is distinct
 
  import fire
  from pyspark.sql import SparkSession
  from pyspark.sql import functions as f
 -from similarities_helper import build_tfidf_dataset, build_weekly_tfidf_dataset, select_topN_subreddits
 +from similarities_helper import tfidf_dataset, build_weekly_tfidf_dataset, select_topN_subreddits
  
  def _tfidf_wrapper(func, inpath, outpath, topN, term_colname, exclude, included_subreddits):
      spark = SparkSession.builder.getOrCreate()
      df = df.filter(~ f.col(term_colname).isin(exclude))
  
      if included_subreddits is not None:
 -        include_subs = set(map(str.strip,map(str.lower, open(included_subreddits))))
 +        include_subs = set(map(str.strip,open(included_subreddits)))
      else:
          include_subs = select_topN_subreddits(topN)
  
      spark.stop()
  
  def tfidf(inpath, outpath, topN, term_colname, exclude, included_subreddits):
 -    return _tfidf_wrapper(build_tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits)
 +    return _tfidf_wrapper(tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits)
  
  def tfidf_weekly(inpath, outpath, topN, term_colname, exclude, included_subreddits):
      return _tfidf_wrapper(build_weekly_tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits)
  
  def tfidf_authors(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
 -                  topN=25000,
 +                  topN=None,
                    included_subreddits=None):
  
      return tfidf("/gscratch/comdata/output/reddit_ngrams/comment_authors.parquet",
                   )
  
  def tfidf_terms(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
 -                topN=25000,
 +                topN=None,
                  included_subreddits=None):
  
      return tfidf("/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet",
                   )
  
  def tfidf_authors_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet',
 -                         topN=25000,
 +                         topN=None,
-                          include_subreddits=None):
+                          included_subreddits=None):
  
      return tfidf_weekly("/gscratch/comdata/output/reddit_ngrams/comment_authors.parquet",
                          outpath,
                          )
  
  def tfidf_terms_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet',
-                        topN=25000):
 -                       topN=25000,
++                       topN=None,
+                        included_subreddits=None):
  
  
      return tfidf_weekly("/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet",
                          topN,
                          'term',
                          [],
-                         included_subreddits=None
+                         included_subreddits=included_subreddits
                          )