2 #################################
 
   5 myuw <- read.csv("myuw-COM_482_A_autumn_2020_students.csv", stringsAsFactors=FALSE)
 
   7 ## class-level variables
 
   8 question.grades <- c("GOOD"=100, "FAIR"=100-(50/3.3), "BAD"=100-(50/(3.3)*2))
 
   9 missed.question.penalty <- (50/3.3) * 0.2 ## 1/5 of a full point on the GPA scale
 
  11 source("../assessment_and_tracking/track_participation.R")
 
  14 rownames(d) <- d$discord.name
 
  16 ## show the distribution of assessments
 
  17 table(call.list.full$assessment)
 
  18 prop.table(table(call.list.full$assessment))
 
  19 table(call.list.full$answered)
 
  20 prop.table(table(call.list.full$answered))
 
  22 total.questions.asked <- nrow(call.list.full)
 
  24 ## create new column with number of questions present
 
  25 d$prop.asked <- d$num.calls / d$num.present
 
  27 ## generate statistics using these new variables
 
  28 prop.asks.quantiles <- quantile(d$prop.asked, probs=seq(0,1, 0.01))
 
  29 prop.asks.quantiles <- prop.asks.quantiles[!duplicated(prop.asks.quantiles)]
 
  31 ## this is generating broken stuff but it's not used for anything
 
  32 d$prop.asked.quant <- cut(d$prop.asked, breaks=prop.asks.quantiles,
 
  33     labels=names(prop.asks.quantiles)[1:(length(prop.asks.quantiles)-1)])
 
  36 ##########################################################
 
  40 ## print the median number of questions for (a) everybody and (b)
 
  41 ## people that have been present 75% of the time
 
  42 median(d$num.calls[d$days.absent < 0.25*case.sessions])
 
  45 questions.cutoff <- median(d$num.calls)
 
  47 ## helper function to generate average grade minus number of missing
 
  48 gen.part.grade <- function (x.discord.name) {
 
  49     q.scores <- question.grades[call.list$assessment[call.list$discord.name == x.discord.name]]
 
  50     base.score <- mean(q.scores, na.rm=TRUE)
 
  52     ## number of missing days
 
  53     missing.days <- nrow(missing.in.class[missing.in.class$discord.name == x.discord.name,])
 
  55     ## return the final score
 
  56     data.frame(discord.name=x.discord.name,
 
  57                part.grade=(base.score - missing.days * missed.question.penalty))
 
  60 tmp <- do.call("rbind", lapply(d$discord.name[d$num.calls >= questions.cutoff], gen.part.grade))
 
  62 d[as.character(tmp$discord.name), "part.grade"] <- tmp$part.grade
 
  64 ## next handle the folks *under* the median
 
  66 ## first we handle the zeros
 
  67 ## step 1: first double check the people who have zeros and ensure that they didn't "just" get unlucky"
 
  70 ## set those people to 0 :(
 
  71 d$part.grade[d$num.calls == 0] <- 0
 
  73 ## step 2 is to handle folks who got unlucky in the normal way
 
  74 tmp <- do.call("rbind", lapply(d$discord.name[is.na(d$part.grade) & d$prop.asked <= median(d$prop.asked)], gen.part.grade))
 
  75 d[as.character(tmp$discord.name), "part.grade"] <- tmp$part.grade
 
  77 ## the people who are left are lucky and still undercounted so we'll penalize them
 
  78 d[is.na(d$part.grade),]
 
  79 penalized.discord.names <- d$discord.name[is.na(d$part.grade)]
 
  81 ## generate the baseline participation grades as per the process above
 
  82 tmp <- do.call("rbind", lapply(penalized.discord.names, gen.part.grade))
 
  83 d[as.character(tmp$discord.name), "part.grade"] <- tmp$part.grade
 
  85 ## now add "zeros" for every questions that is below the normal
 
  86 d[as.character(penalized.discord.names),"part.grade"] <- ((
 
  87     (questions.cutoff - d[as.character(penalized.discord.names),"num.calls"] * 0) +
 
  88     (d[as.character(penalized.discord.names),"num.calls"] * d[as.character(penalized.discord.names),"part.grade"]) )
 
  91 d[as.character(penalized.discord.names),]
 
  93 ## map part grades back to 4.0 letter scale and points
 
  94 d$part.4point <-round((d$part.grade / (50/3.3)) - 2.6, 2)
 
  96 d[sort.list(d$prop.asked), c("discord.name", "num.calls", "num.present",
 
  97                              "prop.asked", "prop.asked.quant", "part.grade", "part.4point",
 
 100 d[sort.list(d$part.4point), c("discord.name", "num.calls", "num.present",
 
 101                              "prop.asked", "prop.asked.quant", "part.grade", "part.4point",
 
 106 quantile(d$num.calls, probs=(0:100*0.01))
 
 107 d.print <- merge(d, myuw[,c("StudentNo", "FirstName", "LastName", "UWNetID")],
 
 108            by.x="student.num", by.y="StudentNo")
 
 109 write.csv(d.print, file="final_participation_grades.csv")
 
 113 for (x.discord.name in d$discord.name) {
 
 114     render(input="../../assessment_and_tracking/student_report_template.Rmd",
 
 115            output_format="html_document",
 
 116            output_file=paste("../data/case_grades/student_reports/",
 
 117                              d.print$UWNetID[d.print$discord.name == x.discord.name],