]> code.communitydata.science - ml_measurement_error_public.git/blob - simulations/measerr_methods.R
00f1746e8e01228a26c11c7dbe3ea8b2673f81f7
[ml_measurement_error_public.git] / simulations / measerr_methods.R
1 library(formula.tools)
2 library(matrixStats)
3
4 ## df: dataframe to model
5 ## outcome_formula: formula for y | x, z
6 ## outcome_family: family for y | x, z
7 ## proxy_formula: formula for w | x, z, y 
8 ## proxy_family: family for w | x, z, y
9 ## truth_formula: formula for x | z
10 ## truth_family: family for x | z
11
12 ### ideal formulas for example 1
13 # test.fit.1 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x, binomial(link='logit'), x ~ z)
14
15 ### ideal formulas for example 2
16 # test.fit.2 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x + z + y + y:x, binomial(link='logit'), x ~ z)
17
18
19 ## outcome_formula <- y ~ x + z; proxy_formula <- w_pred ~ y + x + z + x:z + x:y + z:y 
20 measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula, proxy_family=binomial(link='logit')){
21
22     nll <- function(params){
23         df.obs <- model.frame(outcome_formula, df)
24         proxy.variable <- all.vars(proxy_formula)[1]
25         proxy.model.matrix <- model.matrix(proxy_formula, df)
26         response.var <- all.vars(outcome_formula)[1]
27         y.obs <- with(df.obs,eval(parse(text=response.var)))
28         outcome.model.matrix <- model.matrix(outcome_formula, df.obs)
29
30         param.idx <- 1
31         n.outcome.model.covars <- dim(outcome.model.matrix)[2]
32         outcome.params <- params[param.idx:n.outcome.model.covars]
33         param.idx <- param.idx + n.outcome.model.covars
34
35         if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){
36             ll.y.obs <- vector(mode='numeric', length=length(y.obs))
37             ll.y.obs[y.obs==1] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==1,]),log=TRUE)
38             ll.y.obs[y.obs==0] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==0,]),log=TRUE,lower.tail=FALSE)
39         }
40
41         df.obs <- model.frame(proxy_formula,df)
42         n.proxy.model.covars <- dim(proxy.model.matrix)[2]
43         proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
44
45         param.idx <- param.idx + n.proxy.model.covars
46         proxy.obs <- with(df.obs, eval(parse(text=proxy.variable)))
47
48         if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
49             ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1])
50             ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE)
51             ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
52         }
53
54         ll.obs <- sum(ll.y.obs + ll.w.obs)
55
56         df.unobs <- df[is.na(df[[response.var]])]
57         df.unobs.y1 <- copy(df.unobs)
58         df.unobs.y1[[response.var]] <- 1
59         df.unobs.y0 <- copy(df.unobs)
60         df.unobs.y0[[response.var]] <- 0
61         
62         ## integrate out y
63         outcome.model.matrix.y1 <- model.matrix(outcome_formula, df.unobs.y1)
64
65         if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){
66             ll.y.unobs.1 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1])
67             ll.y.unobs.0 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1])
68             ll.y.unobs.1 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE)
69             ll.y.unobs.0 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE,lower.tail=FALSE)
70         }
71
72         proxy.model.matrix.y1 <- model.matrix(proxy_formula, df.unobs.y1)
73         proxy.model.matrix.y0 <- model.matrix(proxy_formula, df.unobs.y0)
74         proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable)))
75
76         if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
77             ll.w.unobs.1 <- vector(mode='numeric',length=dim(proxy.model.matrix.y1)[1])
78             ll.w.unobs.0 <- vector(mode='numeric',length=dim(proxy.model.matrix.y0)[1])
79             ll.w.unobs.1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==1,]),log=TRUE)
80             ll.w.unobs.1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
81
82             ll.w.unobs.0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==1,]),log=TRUE)
83             ll.w.unobs.0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
84         }
85
86         ll.unobs.1 <- ll.y.unobs.1 + ll.w.unobs.1
87         ll.unobs.0 <- ll.y.unobs.0 + ll.w.unobs.0
88         ll.unobs <- sum(colLogSumExps(rbind(ll.unobs.1,ll.unobs.0)))
89         ll <- ll.unobs + ll.obs
90         return(-ll)
91     }
92     
93     params <- colnames(model.matrix(outcome_formula,df))
94     lower <- rep(-Inf, length(params))
95     proxy.params <- colnames(model.matrix(proxy_formula, df))
96     params <- c(params, paste0('proxy_',proxy.params))
97     lower <- c(lower, rep(-Inf, length(proxy.params)))
98     start <- rep(0.1,length(params))
99     names(start) <- params
100     
101     fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
102     return(fit)
103 }
104
105 ## Experimental, and not necessary if errors are independent.
106 measerr_irr_mle <- function(df, outcome_formula, outcome_family=gaussian(), rater_formula, proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit')){
107
108     ### in this scenario, the ground truth also has measurement error, but we have repeated measures for it. 
109
110     ## probability of y given observed data.
111     df.obs <- df[!is.na(x.obs.1)]
112     proxy.variable <- all.vars(proxy_formula)[1]
113     df.x.obs.1 <- copy(df.obs)[,x:=1]
114     df.x.obs.0 <- copy(df.obs)[,x:=0]
115     y.obs <- df.obs[,y]
116
117     nll <- function(params){
118         outcome.model.matrix.x.obs.0 <- model.matrix(outcome_formula, df.x.obs.0)
119         outcome.model.matrix.x.obs.1 <- model.matrix(outcome_formula, df.x.obs.1)
120
121         param.idx <- 1
122         n.outcome.model.covars <- dim(outcome.model.matrix.x.obs.0)[2]
123         outcome.params <- params[param.idx:n.outcome.model.covars]
124         param.idx <- param.idx + n.outcome.model.covars
125
126         sigma.y <- params[param.idx]
127         param.idx <- param.idx + 1
128
129         ll.y.x.obs.0 <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix.x.obs.0),sd=sigma.y, log=TRUE)
130         ll.y.x.obs.1 <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix.x.obs.1),sd=sigma.y, log=TRUE)
131
132         ## assume that the two coders are statistically independent conditional on x
133         ll.x.obs.0.x0 <- vector(mode='numeric', length=nrow(df.obs))
134         ll.x.obs.1.x0 <- vector(mode='numeric', length=nrow(df.obs))
135         ll.x.obs.0.x1 <- vector(mode='numeric', length=nrow(df.obs))
136         ll.x.obs.1.x1 <- vector(mode='numeric', length=nrow(df.obs))
137
138         rater.model.matrix.x.obs.0 <- model.matrix(rater_formula, df.x.obs.0)
139         rater.model.matrix.x.obs.1 <- model.matrix(rater_formula, df.x.obs.1)
140
141         n.rater.model.covars <- dim(rater.model.matrix.x.obs.0)[2]
142         rater.0.params <- params[param.idx:(n.rater.model.covars + param.idx - 1)]
143         param.idx <- param.idx + n.rater.model.covars
144
145         rater.1.params <- params[param.idx:(n.rater.model.covars + param.idx - 1)]
146         param.idx <- param.idx + n.rater.model.covars
147         
148         # probability of rater 0 if x is 0 or 1
149         ll.x.obs.0.x0[df.obs$x.obs.0==1] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]), log=TRUE)
150         ll.x.obs.0.x0[df.obs$x.obs.0==0] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==0,]), log=TRUE, lower.tail=FALSE)
151         ll.x.obs.0.x1[df.obs$x.obs.0==1] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.0==1,]), log=TRUE)
152         ll.x.obs.0.x1[df.obs$x.obs.0==0] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.0==0,]), log=TRUE, lower.tail=FALSE)
153
154         # probability of rater 1 if x is 0 or 1
155         ll.x.obs.1.x0[df.obs$x.obs.1==1] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.1==1,]), log=TRUE)
156         ll.x.obs.1.x0[df.obs$x.obs.1==0] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.1==0,]), log=TRUE, lower.tail=FALSE)
157         ll.x.obs.1.x1[df.obs$x.obs.1==1] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.1==1,]), log=TRUE)
158         ll.x.obs.1.x1[df.obs$x.obs.1==0] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.1==0,]), log=TRUE, lower.tail=FALSE)
159
160         proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.x.obs.0)
161         proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.x.obs.1)
162
163         n.proxy.model.covars <- dim(proxy.model.matrix.x0)[2]
164         proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
165         param.idx <- param.idx + n.proxy.model.covars
166
167         proxy.obs <- with(df.obs, eval(parse(text=proxy.variable)))
168
169         if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
170             ll.w.obs.x0 <- vector(mode='numeric',length=dim(proxy.model.matrix.x0)[1])
171             ll.w.obs.x1 <- vector(mode='numeric',length=dim(proxy.model.matrix.x1)[1])
172
173                                         # proxy_formula likelihood using logistic regression
174             ll.w.obs.x0[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.obs==1,]),log=TRUE)
175             ll.w.obs.x0[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
176
177             ll.w.obs.x1[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.obs==1,]),log=TRUE)
178             ll.w.obs.x1[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
179         }
180
181         ## assume that the probability of x is a logistic regression depending on z
182         truth.model.matrix.obs <- model.matrix(truth_formula, df.obs)
183         n.truth.params <- dim(truth.model.matrix.obs)[2]
184         truth.params <- params[param.idx:(n.truth.params + param.idx - 1)]
185
186         ll.obs.x0 <- plogis(truth.params %*% t(truth.model.matrix.obs), log=TRUE)
187         ll.obs.x1 <- plogis(truth.params %*% t(truth.model.matrix.obs), log=TRUE, lower.tail=FALSE)
188
189         ll.obs <- colLogSumExps(rbind(ll.y.x.obs.0 + ll.x.obs.0.x0 + ll.x.obs.1.x0 + ll.obs.x0 + ll.w.obs.x0,
190                                       ll.y.x.obs.1 + ll.x.obs.0.x1 + ll.x.obs.1.x1 + ll.obs.x1 + ll.w.obs.x1))
191
192         ### NOW FOR THE FUN PART. Likelihood of the unobserved data.
193         ### we have to integrate out x.obs.0, x.obs.1, and x.
194
195
196         ## THE OUTCOME
197         df.unobs <- df[is.na(x.obs)]
198         df.x.unobs.0 <- copy(df.unobs)[,x:=0]
199         df.x.unobs.1 <- copy(df.unobs)[,x:=1]
200         y.unobs <- df.unobs$y
201
202         outcome.model.matrix.x.unobs.0 <- model.matrix(outcome_formula, df.x.unobs.0)
203         outcome.model.matrix.x.unobs.1 <- model.matrix(outcome_formula, df.x.unobs.1)
204
205         ll.y.unobs.x0 <- dnorm(y.unobs, outcome.params %*% t(outcome.model.matrix.x.unobs.0), sd=sigma.y, log=TRUE)
206         ll.y.unobs.x1 <- dnorm(y.unobs, outcome.params %*% t(outcome.model.matrix.x.unobs.1), sd=sigma.y, log=TRUE)
207
208         
209         ## THE UNLABELED DATA
210
211         
212         ## assume that the two coders are statistically independent conditional on x
213         ll.x.unobs.0.x0 <- vector(mode='numeric', length=nrow(df.unobs))
214         ll.x.unobs.1.x0 <- vector(mode='numeric', length=nrow(df.unobs))
215         ll.x.unobs.0.x1 <- vector(mode='numeric', length=nrow(df.unobs))
216         ll.x.unobs.1.x1 <- vector(mode='numeric', length=nrow(df.unobs))
217         
218         df.x.unobs.0[,x.obs := 1]
219         df.x.unobs.1[,x.obs := 1]
220
221         rater.model.matrix.x.unobs.0 <- model.matrix(rater_formula, df.x.unobs.0)
222         rater.model.matrix.x.unobs.1 <- model.matrix(rater_formula, df.x.unobs.1)
223
224          
225         ## # probability of rater 0 if x is 0 or 1
226         ## ll.x.unobs.0.x0 <- colLogSumExps(rbind(plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE),
227         ##                                      plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE, lower.tail=TRUE)))
228
229         ## ll.x.unobs.0.x1 <- colLogSumExps(rbind(plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE),
230         ##                                        plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE, lower.tail=TRUE)))
231
232         ## # probability of rater 1 if x is 0 or 1
233         ## ll.x.unobs.1.x0 <- colLogSumExps(rbind(plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE),
234         ##                                      plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE, lower.tail=TRUE)))
235
236         ## ll.x.unobs.1.x1 <- colLogSumExps(rbind(plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE),
237         ##                                      plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE, lower.tail=TRUE)))
238
239
240         proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable)))
241         proxy.model.matrix.x0.unobs <- model.matrix(proxy_formula, df.x.unobs.0)
242         proxy.model.matrix.x1.unobs <- model.matrix(proxy_formula, df.x.unobs.1)
243
244         if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
245             ll.w.unobs.x0 <- vector(mode='numeric',length=dim(proxy.model.matrix.x0)[1])
246             ll.w.unobs.x1 <- vector(mode='numeric',length=dim(proxy.model.matrix.x1)[1])
247
248
249                                         # proxy_formula likelihood using logistic regression
250             ll.w.unobs.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0.unobs[proxy.unobs==1,]),log=TRUE)
251             ll.w.unobs.x0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0.unobs[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
252
253             ll.w.unobs.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1.unobs[proxy.unobs==1,]),log=TRUE)
254             ll.w.unobs.x1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1.unobs[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
255         }
256
257         truth.model.matrix.unobs <- model.matrix(truth_formula, df.unobs)
258
259         ll.unobs.x0 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE)
260         ll.unobs.x1 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE, lower.tail=FALSE)
261
262         ll.unobs <- colLogSumExps(rbind(ll.unobs.x0 + ll.w.unobs.x0 + ll.y.unobs.x0,
263                                         ll.unobs.x1 + ll.w.unobs.x1 + ll.y.unobs.x1))
264
265         return(-1 *( sum(ll.obs) + sum(ll.unobs)))
266     }
267
268     outcome.params <- colnames(model.matrix(outcome_formula,df))
269     lower <- rep(-Inf, length(outcome.params))
270
271     if(outcome_family$family=='gaussian'){
272         params <- c(outcome.params, 'sigma_y')
273         lower <- c(lower, 0.00001)
274     } else {
275         params <- outcome.params
276     }
277     
278     rater.0.params <- colnames(model.matrix(rater_formula,df))
279     params <- c(params, paste0('rater_0',rater.0.params))
280     lower <- c(lower, rep(-Inf, length(rater.0.params)))
281
282     rater.1.params <- colnames(model.matrix(rater_formula,df))
283     params <- c(params, paste0('rater_1',rater.1.params))
284     lower <- c(lower, rep(-Inf, length(rater.1.params)))
285
286     proxy.params <- colnames(model.matrix(proxy_formula, df))
287     params <- c(params, paste0('proxy_',proxy.params))
288     lower <- c(lower, rep(-Inf, length(proxy.params)))
289
290     truth.params <- colnames(model.matrix(truth_formula, df))
291     params <- c(params, paste0('truth_', truth.params))
292     lower <- c(lower, rep(-Inf, length(truth.params)))
293     start <- rep(0.1,length(params))
294     names(start) <- params
295     
296     fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
297     return(fit)
298 }
299
300
301 measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit')){
302
303     measrr_mle_nll <- function(params){
304         df.obs <- model.frame(outcome_formula, df)
305         proxy.variable <- all.vars(proxy_formula)[1]
306         proxy.model.matrix <- model.matrix(proxy_formula, df)
307         response.var <- all.vars(outcome_formula)[1]
308         y.obs <- with(df.obs,eval(parse(text=response.var)))
309
310         outcome.model.matrix <- model.matrix(outcome_formula, df)
311
312         param.idx <- 1
313         n.outcome.model.covars <- dim(outcome.model.matrix)[2]
314         outcome.params <- params[param.idx:n.outcome.model.covars]
315         param.idx <- param.idx + n.outcome.model.covars
316
317         ## likelihood for the fully observed data 
318         if(outcome_family$family == "gaussian"){
319             sigma.y <- params[param.idx]
320             param.idx <- param.idx + 1
321
322                                         #  outcome_formula likelihood using linear regression
323             ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE)
324         }
325         
326         df.obs <- model.frame(proxy_formula,df)
327         n.proxy.model.covars <- dim(proxy.model.matrix)[2]
328         proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
329         param.idx <- param.idx + n.proxy.model.covars
330         proxy.obs <- with(df.obs, eval(parse(text=proxy.variable)))
331
332         if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
333             ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1])
334
335                                         # proxy_formula likelihood using logistic regression
336             ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE)
337             ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
338         }
339
340         df.obs <- model.frame(truth_formula, df)
341         truth.variable <- all.vars(truth_formula)[1]
342         truth.obs <- with(df.obs, eval(parse(text=truth.variable)))
343         truth.model.matrix <- model.matrix(truth_formula,df)
344         n.truth.model.covars <- dim(truth.model.matrix)[2]
345         
346         truth.params <- params[param.idx:(n.truth.model.covars + param.idx - 1)]
347
348         if( (truth_family$family=="binomial") & (truth_family$link=='logit')){
349             ll.x.obs <- vector(mode='numeric',length=dim(truth.model.matrix)[1])
350
351                                         # truth_formula likelihood using logistic regression
352             ll.x.obs[truth.obs==1] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==1,]),log=TRUE)
353             ll.x.obs[truth.obs==0] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==0,]),log=TRUE, lower.tail=FALSE)
354         }
355         
356                                         # add the three likelihoods
357         ll.obs <- sum(ll.y.obs + ll.w.obs + ll.x.obs)
358
359         ## likelihood for the predicted data
360         ## integrate out the "truth" variable. 
361         
362         if(truth_family$family=='binomial'){
363             df.unobs <- df[is.na(eval(parse(text=truth.variable)))]
364             df.unobs.x1 <- copy(df.unobs)
365             df.unobs.x1[,'x'] <- 1
366             df.unobs.x0 <- copy(df.unobs)
367             df.unobs.x0[,'x'] <- 0
368             outcome.unobs <- with(df.unobs, eval(parse(text=response.var)))
369             
370             outcome.model.matrix.x0 <- model.matrix(outcome_formula, df.unobs.x0)
371             outcome.model.matrix.x1 <- model.matrix(outcome_formula, df.unobs.x1)
372             if(outcome_family$family=="gaussian"){
373
374                                         # likelihood of outcome
375                 ll.y.x0 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x0), sd=sigma.y, log=TRUE)
376                 ll.y.x1 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x1), sd=sigma.y, log=TRUE)
377             }
378
379             if( (proxy_family$family=='binomial') & (proxy_family$link=='logit')){
380
381                 proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.unobs.x0)
382                 proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.unobs.x1)
383                 proxy.unobs <- df.unobs[[proxy.variable]]
384                 ll.w.x0 <- vector(mode='numeric', length=dim(df.unobs)[1])
385                 ll.w.x1 <- vector(mode='numeric', length=dim(df.unobs)[1])
386
387                                         # likelihood of proxy
388                 ll.w.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==1,]), log=TRUE)
389                 ll.w.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==1,]), log=TRUE)
390
391                 ll.w.x0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE)
392                 ll.w.x1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE)
393             }
394
395             if(truth_family$link=='logit'){
396                 truth.model.matrix <- model.matrix(truth_formula, df.unobs.x0)
397                                         # likelihood of truth
398                 ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE)
399                 ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE, lower.tail=FALSE)
400             }
401         }
402
403         ll.x0 <- ll.y.x0 + ll.w.x0 + ll.x.x0
404         ll.x1 <- ll.y.x1 + ll.w.x1 + ll.x.x1
405         ll.unobs <- sum(colLogSumExps(rbind(ll.x0, ll.x1)))
406         return(-(ll.unobs + ll.obs))
407     }
408     
409     outcome.params <- colnames(model.matrix(outcome_formula,df))
410     lower <- rep(-Inf, length(outcome.params))
411
412     if(outcome_family$family=='gaussian'){
413         params <- c(outcome.params, 'sigma_y')
414         lower <- c(lower, 0.00001)
415     } else {
416         params <- outcome.params
417     }
418     
419     proxy.params <- colnames(model.matrix(proxy_formula, df))
420     params <- c(params, paste0('proxy_',proxy.params))
421     lower <- c(lower, rep(-Inf, length(proxy.params)))
422
423     truth.params <- colnames(model.matrix(truth_formula, df))
424     params <- c(params, paste0('truth_', truth.params))
425     lower <- c(lower, rep(-Inf, length(truth.params)))
426     start <- rep(0.1,length(params))
427     names(start) <- params
428     
429     fit <- optim(start, fn = measrr_mle_nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
430
431     return(fit)
432 }

Community Data Science Collective || Want to submit a patch?