]> code.communitydata.science - ml_measurement_error_public.git/blob - civil_comments/design_example.R
5991334c3cbbdc69649da5bdce4d835a8c95eced
[ml_measurement_error_public.git] / civil_comments / design_example.R
1 library(data.table)
2 library(MASS)
3
4 scores <- fread("perspective_scores.csv")
5 scores <- scores[,id:=as.character(id)]
6
7 df <- fread("all_data.csv")
8
9 # only use the data that has identity annotations
10 df <- df[identity_annotator_count > 0]
11
12 (df[!(df$id %in% scores$id)])
13
14 df <- df[scores,on='id',nomatch=NULL]
15
16 ## how accurate are the classifiers?
17
18 ## the API claims that these scores are "probabilities"
19 ## say we care about the model of the classification, not the probability
20
21 F1 <- function(y, predictions){
22     tp <- sum( (predictions == y) & (predictions==1))
23     fn <- sum( (predictions != y) & (predictions!=1))
24     fp <- sum( (predictions != y) & (predictions==1))
25     precision <- tp / (tp + fp)
26     recall <- tp / (tp + fn)
27     return (2 * precision * recall ) / (precision + recall)
28 }
29
30 df[, ":="(identity_attack_pred = identity_attack_prob >=0.5,
31           insult_pred = insult_prob >= 0.5,
32           profanity_pred = profanity_prob >= 0.5,
33           severe_toxicity_pred = severe_toxicity_prob >= 0.5,
34           threat_pred = threat_prob >= 0.5,
35           toxicity_pred = toxicity_prob >= 0.5,
36           identity_attack_coded = identity_attack >= 0.5,
37           insult_coded = insult >= 0.5,
38           profanity_coded = obscene >= 0.5,
39           severe_toxicity_coded = severe_toxicity >= 0.5,
40           threat_coded = threat >= 0.5,
41           toxicity_coded = toxicity >= 0.5
42           )]
43
44
45
46 ## toxicity is about 93% accurate, with an f1 of 0.8
47 ## identity_attack has high accuracy 97%, but an unfortunant f1 of 0.5.
48 ## threat has high accuracy 99%, but a really bad looking f1 of 0.48.
49 accuracies <- df[,.(identity_attack_acc = mean(identity_attack_pred == identity_attack_coded),
50                     insult_pred_acc = mean(insult_pred == insult_coded),
51                     profanity_acc = mean(profanity_pred == profanity_coded),
52                     severe_toxicity_acc = mean(severe_toxicity_pred == severe_toxicity_coded),
53                     theat_acc = mean(threat_pred == threat_coded),
54                     toxicity_acc = mean(toxicity_pred == toxicity_coded))]
55
56 f1s <- df[,.(identity_attack_f1 = F1(identity_attack_coded,identity_attack_pred),
57                     insult_f1 = F1(insult_coded,insult_pred),
58                     profanity_f1 = F1(profanity_coded,profanity_pred),
59                     severe_toxicity_f1 = F1(severe_toxicity_coded,severe_toxicity_pred),
60                     theat_f1 = F1(threat_coded,threat_pred),
61                     toxicity_f1 = F1(toxicity_coded,toxicity_pred))]
62
63 positive_cases <- df[,.(identity_attacks = sum(identity_attack_coded),
64                         insults = sum(insult_coded),
65                         profanities = sum(profanity_coded),
66                         severe_toxic_comments = sum(severe_toxicity_coded),
67                         threats = sum(threat_coded),
68                         toxic_comments = sum(toxicity_coded))]
69
70 ## there are 50,000 toxic comments, 13000 identity attacks, 30000 insults, 3000 profanities, 8 severe toxic, and 1000 threats.
71
72 proportions_cases <- df[,.(prop_identity = mean(identity_attack_coded),
73                            prop_insults = mean(insult_coded),
74                            prop_profanity = mean(profanity_coded),
75                            prop_severe = mean(severe_toxicity_coded),
76                            prop_threats = mean(threat_coded),
77                            prop_toxic = mean(toxicity_coded))]
78
79 ## at 11% of comments, "toxicity" seems not so badly skewed. Try toxicity first, and if it doesn't work out try insults.
80
81 ## now look for an example where differential error affects an identity, or a reaction.
82 df <- df[,":="(identity_error = identity_attack_coded - identity_attack_pred,
83                insult_error = insult_coded - insult_pred,
84                profanity_error = profanity_coded - profanity_pred,
85                severe_toxic_error = severe_toxicity_coded - severe_toxicity_pred,
86                threat_error = threat_coded - threat_pred,
87                toxicity_error = toxicity_coded - toxicity_pred)]
88
89 ## what's correlated with toxicity_error ?
90 df <- df[,approved := rating == "approved"]
91
92 cortab <- cor(df[,.(toxicity_error,
93                     identity_error,
94                     toxicity_coded,
95                     funny,
96                     approved,
97                     sad,
98                     wow,
99                     likes,
100                     disagree,
101                     male,
102                     female,
103                     transgender,
104                     other_gender,
105                     heterosexual,
106                     bisexual,
107                     other_sexual_orientation,
108                     christian,
109                     jewish,
110                     hindu,
111                     buddhist,
112                     atheist,
113                     other_religion,
114                     black,
115                     white,
116                     asian,
117                     latino,
118                     other_race_or_ethnicity,
119                     physical_disability,
120                     intellectual_or_learning_disability,
121                     psychiatric_or_mental_illness,
122                     other_disability)])
123
124 ## toxicity error is weakly correlated pearson's R = 0.1 with both "white" and "black".
125
126 ## compare regressions with "white" or "black" as the outcome and "toxicity_coded" or "toxicity_pred" as a predictor.
127 ## here's a great example with presumambly non-differential error: about what identities is toxicity found humorous?
128 ## a bunch of stars reappear when you used the ground-truth data instead of the predictions.
129 ## pro/con of this example: will have to implement family='poisson'.
130 ## shouldn't be that bad though haha.
131 cortab['toxicity_error',]
132 cortab['toxicity_error','funny']
133 cortab['toxicity_coded',]
134 cortab['identity_error',]
135 cortab['white',]
136
137 glm(white ~ toxicity_coded + psychiatric_or_mental_illness, data = df, family=binomial(link='logit'))
138
139 glm(white ~ toxicity_pred + psychiatric_or_mental_illness, data = df, family=binomial(link='logit'))
140
141 m1 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity_coded, data = df)
142
143 m2 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity_pred, data = df)
144
145 m3 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity, data = df)
146
147
148 glm(white ~ disagree, data = df, family=binomial(link='logit'))
149
150 ## example with differential error
151
152 glm(white ~ toxicity_coded + toxicity_error, data=df,family=binomial(link='logit'))
153
154 glm(toxicity_coded ~ white, data = df, family=binomial(link='logit'))
155
156 glm(toxicity_pred ~ white, data = df, family=binomial(link='logit'))

Community Data Science Collective || Want to submit a patch?