]> code.communitydata.science - ml_measurement_error_public.git/blob - simulations/robustness_check_notes.md
e6adc8a5fe7ca9b6a699ab8aeaf9c76aaf37f2c6
[ml_measurement_error_public.git] / simulations / robustness_check_notes.md
1 # robustness_1.RDS
2
3 Tests how robust the MLE method is when the model for $X$ is less precise. In the main result, we include $Z$ on the right-hand-side of the `truth_formula`. 
4 In this robustness check, the `truth_formula` is an intercept-only model.
5

Community Data Science Collective || Want to submit a patch?