- ## accuracy_x0 <- prediction_accuracy / (px*(accuracy_imbalance_ratio) + (1-px))
- ## accuracy_x1 <- accuracy_imbalance_ratio * accuracy_x0
-
- ## x0 <- df[x==0]$x
- ## x1 <- df[x==1]$x
- ## nx1 <- nrow(df[x==1])
- ## nx0 <- nrow(df[x==0])
-
- ## yx0 <- df[x==0]$y
- ## yx1 <- df[x==1]$y
-
- # tranform yz0.1 into a logistic distribution with mean accuracy_z0
- ## acc.x0 <- plogis(0.5*scale(yx0) + qlogis(accuracy_x0))
- ## acc.x1 <- plogis(1.5*scale(yx1) + qlogis(accuracy_x1))
-
- ## w0x0 <- (1-x0)**2 + (-1)**(1-x0) * acc.x0
- ## w0x1 <- (1-x1)**2 + (-1)**(1-x1) * acc.x1
- pz <- mean(z)
- accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2)
-
- # this works because of conditional probability
- accuracy_z0 <- prediction_accuracy / (pz*(accuracy_imbalance_ratio) + (1-pz))
- accuracy_z1 <- accuracy_imbalance_ratio * accuracy_z0
-
- z0x0 <- df[(z==0) & (x==0)]$x
- z0x1 <- df[(z==0) & (x==1)]$x
- z1x0 <- df[(z==1) & (x==0)]$x
- z1x1 <- df[(z==1) & (x==1)]$x
-
- yz0x0 <- df[(z==0) & (x==0)]$y
- yz0x1 <- df[(z==0) & (x==1)]$y
- yz1x0 <- df[(z==1) & (x==0)]$y
- yz1x1 <- df[(z==1) & (x==1)]$y
-
- nz0x0 <- nrow(df[(z==0) & (x==0)])
- nz0x1 <- nrow(df[(z==0) & (x==1)])
- nz1x0 <- nrow(df[(z==1) & (x==0)])
- nz1x1 <- nrow(df[(z==1) & (x==1)])
-
- yz1 <- df[z==1]$y
- yz1 <- df[z==1]$y
-
- # tranform yz0.1 into a logistic distribution with mean accuracy_z0
- acc.z0x0 <- plogis(0.5*scale(yz0x0) + qlogis(accuracy_z0))
- acc.z0x1 <- plogis(0.5*scale(yz0x1) + qlogis(accuracy_z0))
- acc.z1x0 <- plogis(1.5*scale(yz1x0) + qlogis(accuracy_z1))
- acc.z1x1 <- plogis(1.5*scale(yz1x1) + qlogis(accuracy_z1))
-
- w0z0x0 <- (1-z0x0)**2 + (-1)**(1-z0x0) * acc.z0x0
- w0z0x1 <- (1-z0x1)**2 + (-1)**(1-z0x1) * acc.z0x1
- w0z1x0 <- (1-z1x0)**2 + (-1)**(1-z1x0) * acc.z1x0
- w0z1x1 <- (1-z1x1)**2 + (-1)**(1-z1x1) * acc.z1x1
-
- ##perrorz0 <- w0z0*(pyz0)
- ##perrorz1 <- w0z1*(pyz1)
-
- w0z0x0.noisy.odds <- rlogis(nz0x0,qlogis(w0z0x0))
- w0z0x1.noisy.odds <- rlogis(nz0x1,qlogis(w0z0x1))
- w0z1x0.noisy.odds <- rlogis(nz1x0,qlogis(w0z1x0))
- w0z1x1.noisy.odds <- rlogis(nz1x1,qlogis(w0z1x1))
-
- df[(z==0)&(x==0),w:=plogis(w0z0x0.noisy.odds)]
- df[(z==0)&(x==1),w:=plogis(w0z0x1.noisy.odds)]
- df[(z==1)&(x==0),w:=plogis(w0z1x0.noisy.odds)]
- df[(z==1)&(x==1),w:=plogis(w0z1x1.noisy.odds)]
-
- df[,w_pred:=as.integer(w > 0.5)]
- print(mean(df[z==0]$x == df[z==0]$w_pred))
- print(mean(df[z==1]$x == df[z==1]$w_pred))
+ ## accuracy_z0 <- prediction_accuracy / (pz*(accuracy_imbalance_ratio) + (1-pz))
+ ## accuracy_z1 <- accuracy_imbalance_ratio * accuracy_z0
+
+ ## z0x0 <- df[(z==0) & (x==0)]$x
+ ## z0x1 <- df[(z==0) & (x==1)]$x
+ ## z1x0 <- df[(z==1) & (x==0)]$x
+ ## z1x1 <- df[(z==1) & (x==1)]$x
+
+ ## yz0x0 <- df[(z==0) & (x==0)]$y
+ ## yz0x1 <- df[(z==0) & (x==1)]$y
+ ## yz1x0 <- df[(z==1) & (x==0)]$y
+ ## yz1x1 <- df[(z==1) & (x==1)]$y
+
+ ## nz0x0 <- nrow(df[(z==0) & (x==0)])
+ ## nz0x1 <- nrow(df[(z==0) & (x==1)])
+ ## nz1x0 <- nrow(df[(z==1) & (x==0)])
+ ## nz1x1 <- nrow(df[(z==1) & (x==1)])
+
+ ## yz1 <- df[z==1]$y
+ ## yz1 <- df[z==1]$y
+
+ ## # tranform yz0.1 into a logistic distribution with mean accuracy_z0
+ ## acc.z0x0 <- plogis(0.5*scale(yz0x0) + qlogis(accuracy_z0))
+ ## acc.z0x1 <- plogis(0.5*scale(yz0x1) + qlogis(accuracy_z0))
+ ## acc.z1x0 <- plogis(1.5*scale(yz1x0) + qlogis(accuracy_z1))
+ ## acc.z1x1 <- plogis(1.5*scale(yz1x1) + qlogis(accuracy_z1))
+
+ ## w0z0x0 <- (1-z0x0)**2 + (-1)**(1-z0x0) * acc.z0x0
+ ## w0z0x1 <- (1-z0x1)**2 + (-1)**(1-z0x1) * acc.z0x1
+ ## w0z1x0 <- (1-z1x0)**2 + (-1)**(1-z1x0) * acc.z1x0
+ ## w0z1x1 <- (1-z1x1)**2 + (-1)**(1-z1x1) * acc.z1x1
+
+ ## ##perrorz0 <- w0z0*(pyz0)
+ ## ##perrorz1 <- w0z1*(pyz1)
+
+ ## w0z0x0.noisy.odds <- rlogis(nz0x0,qlogis(w0z0x0))
+ ## w0z0x1.noisy.odds <- rlogis(nz0x1,qlogis(w0z0x1))
+ ## w0z1x0.noisy.odds <- rlogis(nz1x0,qlogis(w0z1x0))
+ ## w0z1x1.noisy.odds <- rlogis(nz1x1,qlogis(w0z1x1))
+
+ ## df[(z==0)&(x==0),w:=plogis(w0z0x0.noisy.odds)]
+ ## df[(z==0)&(x==1),w:=plogis(w0z0x1.noisy.odds)]
+ ## df[(z==1)&(x==0),w:=plogis(w0z1x0.noisy.odds)]
+ ## df[(z==1)&(x==1),w:=plogis(w0z1x1.noisy.odds)]
+
+ ## df[,w_pred:=as.integer(w > 0.5)]
+ ## print(mean(df[z==0]$x == df[z==0]$w_pred))
+ ## print(mean(df[z==1]$x == df[z==1]$w_pred))
+ ## print(mean(df$w_pred == df$x))
+
+
+ resids <- resid(lm(y~x + z))
+ odds.x1 <- qlogis(prediction_accuracy) + y_bias*qlogis(pnorm(resids[x==1])) + z_bias * qlogis(pnorm(z[x==1],sd(z)))
+ odds.x0 <- qlogis(prediction_accuracy,lower.tail=F) + y_bias*qlogis(pnorm(resids[x==0])) + z_bias * qlogis(pnorm(z[x==0],sd(z)))
+
+ ## acc.x0 <- p.correct[df[,x==0]]
+ ## acc.x1 <- p.correct[df[,x==1]]
+
+ df[x==0,w:=plogis(rlogis(.N,odds.x0))]
+ df[x==1,w:=plogis(rlogis(.N,odds.x1))]
+
+ df[,w_pred := as.integer(w > 0.5)]
+
+