+ ${srun} Rscript plot_dv_example.R --infile example_4.feather --name "plot.df.example.4"
+
+
+START=0
+STEP=1000
+ONE=1
+
+robustness_Ns=[1000,5000]
+robustness_robustness_ms=[100,200]
+
+#in robustness 1 / example 2 misclassification is correlated with Y.
+robustness_1_jobs_p1: 02_indep_differential.R simulation_base.R grid_sweep.py
+ sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 02_indep_differential.R" --arg_dict '{"N":[1000],"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_1.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3,0],"Bxy":[0.3],"Bzx":[1,0], "outcome_formula":["y~x+z"], "z_bias":[0, 0.5], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~1"]}' --outfile robustness_1_jobs_p1
+
+robustness_1_jobs_p2: 02_indep_differential.R simulation_base.R grid_sweep.py
+ sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 02_indep_differential.R" --arg_dict '{"N":[5000],"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_1.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3,0],"Bxy":[0.3],"Bzx":[1,0], "outcome_formula":["y~x+z"], "z_bias":[0, 0.5], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~1"]}' --outfile robustness_1_jobs_p2
+
+robustness_1.feather: robustness_1_jobs_p1 robustness_1_jobs_p2
+ rm -f $@
+ $(eval END_1!=cat robustness_1_jobs_p1 | wc -l)
+ $(eval ITEROBUSTNESS_MS_1!=seq $(START) $(STEP) $(END_1))
+ $(eval END_2!=cat robustness_1_jobs_p2 | wc -l)
+ $(eval ITEROBUSTNESS_MS_2!=seq $(START) $(STEP) $(END_2))
+
+ $(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_1_jobs_p1;)
+ $(foreach item,$(ITEMS_2),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_1_jobs_p2;)
+
+robustness_1.RDS: robustness_1.feather summarize_estimator.R
+ rm -f robustness_1.RDS
+ ${srun} Rscript plot_example.R --infile $< --name "robustness_1" --remember-file $@
+
+# when Bzy is 0 and zbias is not zero, we have the case where P(W|Y,X,Z) has an omitted variable that is conditionanlly independent from Y. Note that X and Z are independent in this scenario.
+robustness_1_dv_jobs_p1: simulation_base.R 04_depvar_differential.R grid_sweep.py
+ ${srun} grid_sweep.py --command 'Rscript 04_depvar_differential.R' --arg_dict '{"N":[1000],"Bzx":[1], "Bxy":[0.7,0],"Bzy":[-0.7,0],"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_1_dv.feather"], "proxy_formula":["w_pred~y"],"z_bias":[-0.5]}' --outfile robustness_1_dv_jobs_p1
+
+robustness_1_dv_jobs_p2: simulation_base.R 04_depvar_differential.R grid_sweep.py
+ ${srun} grid_sweep.py --command 'Rscript 04_depvar_differential.R' --arg_dict '{"N":[5000],"Bzx":[1], "Bxy":[0.7,0],"Bzy":[-0.7,0],"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_1_dv.feather"], "proxy_formula":["w_pred~y"],"z_bias":[-0.5]}' --outfile robustness_1_dv_jobs_p2
+
+robustness_1_dv.feather: robustness_1_dv_jobs_p1 robustness_1_dv_jobs_p2
+ rm -f $@
+ $(eval END_1!=cat robustness_1_dv_jobs_p1 | wc -l)
+ $(eval ITEMS_1!=seq $(START) $(STEP) $(END_1))
+ $(eval END_2!=cat robustness_1_dv_jobs_p2 | wc -l)
+ $(eval ITEMS_2!=seq $(START) $(STEP) $(END_1))
+ $(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_1_dv_jobs_p1;)
+ $(foreach item,$(ITEMS_2),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_1_dv_jobs_p2;)
+
+robustness_1_dv.RDS: robustness_1_dv.feather summarize_estimator.R
+ rm -f $@
+ ${srun} Rscript plot_dv_example.R --infile $< --name "robustness_1_dv" --remember-file $@
+
+
+robustness_2_jobs_p1: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py
+ rm -f $@
+ ${srun} $< --command 'Rscript 01_two_covariates.R' --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.60,0.65]}' --outfile $@
+
+robustness_2_jobs_p2: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py
+ rm -f $@
+ ${srun} $< --command 'Rscript 01_two_covariates.R' --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.70,0.75]}' --outfile $@
+
+robustness_2_jobs_p3: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py
+ rm -f $@
+ ${srun} $< --command 'Rscript 01_two_covariates.R' --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.80,0.85]}' --outfile $@
+
+robustness_2_jobs_p4: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py
+ rm -f $@
+ ${srun} $< --command 'Rscript 01_two_covariates.R' --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.90,0.95]}' --outfile $@
+
+robustness_2.feather: robustness_2_jobs_p1 robustness_2_jobs_p2 robustness_2_jobs_p3 robustness_2_jobs_p4
+ rm $@
+ $(eval END_1!=cat robustness_2_jobs_p1 | wc -l)
+ $(eval ITEMS_1!=seq $(START) $(STEP) $(END_1))
+ $(eval END_2!=cat robustness_2_jobs_p2 | wc -l)
+ $(eval ITEMS_2!=seq $(START) $(STEP) $(END_2))
+ $(eval END_3!=cat robustness_2_jobs_p3 | wc -l)
+ $(eval ITEMS_3!=seq $(START) $(STEP) $(END_3))
+ $(eval END_4!=cat robustness_2_jobs_p4 | wc -l)
+ $(eval ITEMS_4!=seq $(START) $(STEP) $(END_4))
+
+ $(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_2_jobs_p1;)
+ $(foreach item,$(ITEMS_2),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_2_jobs_p2;)
+ $(foreach item,$(ITEMS_3),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_2_jobs_p3;)
+ $(foreach item,$(ITEMS_4),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_2_jobs_p4;)
+
+robustness_2.RDS: plot_example.R robustness_2.feather summarize_estimator.R
+ rm -f $@
+ ${srun} Rscript $< --infile $(word 2, $^) --name "robustness_2" --remember-file $@
+
+robustness_2_dv_jobs_p1: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py
+ rm -f $@
+ ${srun} $< --command 'Rscript 03_depvar.R' --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2_dv.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.60,0.65]}' --outfile $@
+
+robustness_2_dv_jobs_p2: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py
+ rm -f $@
+ ${srun} $< --command 'Rscript 03_depvar.R' --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2_dv.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.70,0.75]}' --outfile $@
+
+robustness_2_dv_jobs_p3: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py
+ rm -f $@
+ ${srun} $< --command 'Rscript 03_depvar.R' --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2_dv.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.80,0.85]}' --outfile $@
+
+robustness_2_dv_jobs_p4: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py
+ rm -f $@
+ ${srun} $< --command 'Rscript 03_depvar.R' --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2_dv.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.90,0.95]}' --outfile $@
+
+robustness_2_dv.feather: robustness_2_dv_jobs_p1 robustness_2_dv_jobs_p2 robustness_2_dv_jobs_p3 robustness_2_dv_jobs_p4
+ rm -f $@
+ $(eval END_1!=cat robustness_2_dv_jobs_p1 | wc -l)
+ $(eval ITEMS_1!=seq $(START) $(STEP) $(END_1))
+ $(eval END_2!=cat robustness_2_dv_jobs_p2 | wc -l)
+ $(eval ITEMS_2!=seq $(START) $(STEP) $(END_2))
+ $(eval END_3!=cat robustness_2_dv_jobs_p3 | wc -l)
+ $(eval ITEMS_3!=seq $(START) $(STEP) $(END_3))
+ $(eval END_4!=cat robustness_2_dv_jobs_p4 | wc -l)
+ $(eval ITEMS_4!=seq $(START) $(STEP) $(END_4))
+
+ $(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_2_dv_jobs_p1;)
+ $(foreach item,$(ITEMS_2),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_2_dv_jobs_p2;)
+ $(foreach item,$(ITEMS_3),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_2_dv_jobs_p3;)
+ $(foreach item,$(ITEMS_4),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_2_dv_jobs_p4;)
+
+robustness_2_dv.RDS: plot_dv_example.R robustness_2_dv.feather summarize_estimator.R
+ rm -f $@
+ ${srun} Rscript $< --infile $(word 2, $^) --name "robustness_2_dv" --remember-file $@
+
+
+robustness_3_proflik_jobs: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py
+ rm -f $@
+ ${srun} $< --command 'Rscript 01_two_covariates.R' --arg_dict '{"N":[1000],"m":[100], "seed":${seeds}, "outfile":["robustness_3_proflik.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1],"Px":[0.5,0.6,0.7,0.8,0.9,0.95], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85], "confint_method":['spline']}' --outfile $@
+
+robustness_3_proflik.feather: robustness_3_proflik_jobs
+ rm -f $@
+ $(eval END_1!=cat robustness_3_proflik_jobs | wc -l)
+ $(eval ITEMS_1!=seq $(START) $(STEP) $(END_1))
+ $(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_3_proflik_jobs;)
+
+robustness_3_proflik.RDS: plot_example.R robustness_3_proflik.feather summarize_estimator.R
+ rm -f $@
+ ${srun} Rscript $< --infile $(word 2, $^) --name "robustness_3_proflik" --remember-file $@
+
+
+robustness_3_jobs_p1: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py
+ rm -f $@
+ ${srun} $< --command 'Rscript 01_two_covariates.R' --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_3.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1],"Px":[0.5,0.6], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85]}' --outfile $@
+
+robustness_3_jobs_p2: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py
+ rm -f $@
+ ${srun} $< --command 'Rscript 01_two_covariates.R' --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_3.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1],"Px":[0.7,0.8], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85]}' --outfile $@
+
+robustness_3_jobs_p3: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py
+ rm -f $@
+ ${srun} $< --command 'Rscript 01_two_covariates.R' --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_3.feather"],"y_explained_variance":${explained_variances}, "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1],"Px":[0.9,0.95], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85]}' --outfile $@
+
+robustness_3.feather: robustness_3_jobs_p1 robustness_3_jobs_p2 robustness_3_jobs_p3
+ rm -f $@
+ $(eval END_1!=cat robustness_3_jobs_p1 | wc -l)
+ $(eval ITEMS_1!=seq $(START) $(STEP) $(END_1))
+ $(eval END_2!=cat robustness_3_jobs_p2 | wc -l)
+ $(eval ITEMS_2!=seq $(START) $(STEP) $(END_2))
+ $(eval END_3!=cat robustness_3_jobs_p3 | wc -l)
+ $(eval ITEMS_3!=seq $(START) $(STEP) $(END_3))
+
+ $(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_3_jobs_p1;)
+ $(foreach item,$(ITEMS_2),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_3_jobs_p2;)
+ $(foreach item,$(ITEMS_3),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_3_jobs_p3;)