#### how much power do we get from the model in the first place? (sweeping N and m)
####
-simulate_data <- function(N, m, B0=0, Bxy=0.2, Bzy=-0.2, Bzx=0.2, y_explained_variance=0.025, prediction_accuracy=0.73, seed=1){
+simulate_data <- function(N, m, B0=0, Bxy=0.2, Bzy=-0.2, Bzx=0.2, y_explained_variance=0.025, prediction_accuracy=0.73, Px=0.5, seed=1){
set.seed(seed)
- z <- rbinom(N, 1, 0.5)
+ z <- rnorm(N,sd=0.5)
# x.var.epsilon <- var(Bzx *z) * ((1-zx_explained_variance)/zx_explained_variance)
- xprime <- Bzx * z #+ x.var.epsilon
+ xprime <- Bzx * z + qlogis(Px)
x <- rbinom(N,1,plogis(xprime))
y.var.epsilon <- (var(Bzy * z) + var(Bxy *x) + 2*cov(Bxy*x,Bzy*z)) * ((1-y_explained_variance)/y_explained_variance)
parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z")
parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3)
parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3)
-parser <- add_argument(parser, "--Bxy", help='Effect of z on y', default=0.3)
+parser <- add_argument(parser, "--Bxy", help='Effect of x on y', default=0.3)
+parser <- add_argument(parser, "--Px", help='Base rate of x', default=0.5)
+parser <- add_argument(parser, "--confint_method", help='method for approximating confidence intervals', default='quad')
args <- parse_args(parser)
B0 <- 0
+Px <- args$Px
Bxy <- args$Bxy
Bzy <- args$Bzy
Bzx <- args$Bzx
-if (args$m < args$N){
+df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, Bzx, Px, seed=args$seed + 500, y_explained_variance = args$y_explained_variance, prediction_accuracy=args$prediction_accuracy)
- df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, Bzx, seed=args$seed + 500, y_explained_variance = args$y_explained_variance, prediction_accuracy=args$prediction_accuracy)
+result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, 'Bzx'=Bzx, 'Bzy'=Bzy, 'Px'=Px, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, confint_method=args$confint_method,error='')
- result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, error='')
-
- outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula))
+outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula),confint_method=args$confint_method)
- outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
- if(file.exists(args$outfile)){
- logdata <- read_feather(args$outfile)
- logdata <- rbind(logdata,as.data.table(outline),fill=TRUE)
- } else {
- logdata <- as.data.table(outline)
- }
-
- print(outline)
- write_feather(logdata, args$outfile)
- unlock(outfile_lock)
+outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
+if(file.exists(args$outfile)){
+ logdata <- read_feather(args$outfile)
+ logdata <- rbind(logdata,as.data.table(outline),fill=TRUE)
+} else {
+ logdata <- as.data.table(outline)
}
+
+print(outline)
+write_feather(logdata, args$outfile)
+unlock(outfile_lock)
+