+source("RemembR/R/RemembeR.R")
+library(arrow)
+library(data.table)
+library(ggplot2)
+library(filelock)
+library(argparser)
+
+parser <- arg_parser("Simulate data and fit corrected models.")
+parser <- add_argument(parser, "--infile", default="", help="name of the file to read.")
+parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.")
+args <- parse_args(parser)
+source("summarize_estimator.R")
+
+build_plot_dataset <- function(df){
+
+ x.true <- summarize.estimator(df, 'true','x')
+
+ z.true <- summarize.estimator(df, 'true','z')
+
+ x.loa0.feasible <- summarize.estimator(df, 'loa0.feasible','x')
+
+ z.loa0.feasible <- summarize.estimator(df,'loa0.feasible','z')
+
+ x.loa0.mle <- summarize.estimator(df, 'loa0.mle', 'x')
+
+ z.loa0.mle <- summarize.estimator(df, 'loa0.mle', 'z')
+
+ x.loco.feasible <- summarize.estimator(df, 'loco.feasible', 'x')
+
+ z.loco.feasible <- summarize.estimator(df, 'loco.feasible', 'z')
+
+ x.loco.mle <- summarize.estimator(df, 'loco.mle', 'x')
+
+ z.loco.mle <- summarize.estimator(df, 'loco.mle', 'z')
+
+ ## x.mle <- summarize.estimator(df, 'mle', 'x')
+
+ ## z.mle <- summarize.estimator(df, 'mle', 'z')
+
+ accuracy <- df[,mean(accuracy)]
+ plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, x.loco.mle, z.loco.mle),use.names=T)
+ plot.df[,accuracy := accuracy]
+ plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)]
+ return(plot.df)
+}
+
+
+plot.df <- read_feather(args$infile)
+print(unique(plot.df$N))
+
+# df <- df[apply(df,1,function(x) !any(is.na(x)))]
+
+if(!('Bzx' %in% names(plot.df)))
+ plot.df[,Bzx:=NA]
+
+if(!('accuracy_imbalance_difference' %in% names(plot.df)))
+ plot.df[,accuracy_imbalance_difference:=NA]
+
+unique(plot.df[,'accuracy_imbalance_difference'])
+
+#plot.df <- build_plot_dataset(df[accuracy_imbalance_difference==0.1][N==700])
+plot.df <- build_plot_dataset(plot.df)
+change.remember.file("remember_irr.RDS",clear=TRUE)
+remember(plot.df,args$name)
+
+#ggplot(df,aes(x=Bxy.est.mle)) + geom_histogram() + facet_grid(accuracy_imbalance_difference ~ Bzy)
+
+## ## ## df[gmm.ER_pval<0.05]
+
+## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T),
+## N=factor(N),
+## m=factor(m))]
+
+## plot.df.test <- plot.df.test[(variable=='x') & (method!="Multiple imputation (Classifier features unobserved)")]
+## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method))
+## p <- p + geom_hline(data=plot.df.test, mapping=aes(yintercept=0.1),linetype=2)
+
+## p <- p + geom_pointrange() + facet_grid(N~m,as.table=F,scales='free') + scale_x_discrete(labels=label_wrap_gen(4))
+## print(p)
+
+## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T),
+## N=factor(N),
+## m=factor(m))]
+
+## plot.df.test <- plot.df.test[(variable=='z') & (method!="Multiple imputation (Classifier features unobserved)")]
+## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method))
+## p <- p + geom_hline(data=plot.df.test, mapping=aes(yintercept=-0.1),linetype=2)
+
+## p <- p + geom_pointrange() + facet_grid(m~N,as.table=F,scales='free') + scale_x_discrete(labels=label_wrap_gen(4))
+## print(p)
+
+
+## x.mle <- df[,.(N,m,Bxy.est.mle,Bxy.ci.lower.mle, Bxy.ci.upper.mle, y_explained_variance, Bzx, Bzy, accuracy_imbalance_difference)]
+## x.mle.plot <- x.mle[,.(mean.est = mean(Bxy.est.mle),
+## var.est = var(Bxy.est.mle),
+## N.sims = .N,
+## variable='z',
+## method='Bespoke MLE'
+## ),
+## by=c("N","m",'y_explained_variance', 'Bzx', 'Bzy','accuracy_imbalance_difference')]
+
+## z.mle <- df[,.(N,m,Bzy.est.mle,Bzy.ci.lower.mle, Bzy.ci.upper.mle, y_explained_variance, Bzx, Bzy, accuracy_imbalance_difference)]
+
+## z.mle.plot <- z.mle[,.(mean.est = mean(Bzy.est.mle),
+## var.est = var(Bzy.est.mle),
+## N.sims = .N,
+## variable='z',
+## method='Bespoke MLE'
+## ),
+## by=c("N","m",'y_explained_variance','Bzx')]
+
+## plot.df <- z.mle.plot
+## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T),
+## N=factor(N),
+## m=factor(m))]
+
+## plot.df.test <- plot.df.test[(variable=='z') & (m != 1000) & (m!=500) & (method!="Multiple imputation (Classifier features unobserved)")]
+## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method))
+## p <- p + geom_hline(aes(yintercept=0.2),linetype=2)
+
+## p <- p + geom_pointrange() + facet_grid(m~Bzx, Bzy,as.table=F) + scale_x_discrete(labels=label_wrap_gen(4))
+## print(p)
+
+
+## ## ggplot(plot.df[variable=='x'], aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method)) + geom_pointrange() + facet_grid(-m~N) + scale_x_discrete(labels=label_wrap_gen(10))
+
+## ## ggplot(plot.df,aes(y=N,x=m,color=p.sign.correct)) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size")
+
+## ## ggplot(plot.df,aes(y=N,x=m,color=abs(mean.bias))) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size")