+ # this works because of conditional probability
+ accuracy_z0 <- prediction_accuracy / (pz*(accuracy_imbalance_ratio) + (1-pz))
+ accuracy_z1 <- accuracy_imbalance_ratio * accuracy_z0
+
+ z0x0 <- df[(z==0) & (x==0)]$x
+ z0x1 <- df[(z==0) & (x==1)]$x
+ z1x0 <- df[(z==1) & (x==0)]$x
+ z1x1 <- df[(z==1) & (x==1)]$x
+
+ yz0x0 <- df[(z==0) & (x==0)]$y
+ yz0x1 <- df[(z==0) & (x==1)]$y
+ yz1x0 <- df[(z==1) & (x==0)]$y
+ yz1x1 <- df[(z==1) & (x==1)]$y
+
+ nz0x0 <- nrow(df[(z==0) & (x==0)])
+ nz0x1 <- nrow(df[(z==0) & (x==1)])
+ nz1x0 <- nrow(df[(z==1) & (x==0)])
+ nz1x1 <- nrow(df[(z==1) & (x==1)])
+
+ yz1 <- df[z==1]$y
+ yz1 <- df[z==1]$y
+
+ # tranform yz0.1 into a logistic distribution with mean accuracy_z0
+ acc.z0x0 <- plogis(0.5*scale(yz0x0) + qlogis(accuracy_z0))
+ acc.z0x1 <- plogis(0.5*scale(yz0x1) + qlogis(accuracy_z0))
+ acc.z1x0 <- plogis(1.5*scale(yz1x0) + qlogis(accuracy_z1))
+ acc.z1x1 <- plogis(1.5*scale(yz1x1) + qlogis(accuracy_z1))
+
+ w0z0x0 <- (1-z0x0)**2 + (-1)**(1-z0x0) * acc.z0x0
+ w0z0x1 <- (1-z0x1)**2 + (-1)**(1-z0x1) * acc.z0x1
+ w0z1x0 <- (1-z1x0)**2 + (-1)**(1-z1x0) * acc.z1x0
+ w0z1x1 <- (1-z1x1)**2 + (-1)**(1-z1x1) * acc.z1x1
+
+ ##perrorz0 <- w0z0*(pyz0)
+ ##perrorz1 <- w0z1*(pyz1)
+
+ w0z0x0.noisy.odds <- rlogis(nz0x0,qlogis(w0z0x0))
+ w0z0x1.noisy.odds <- rlogis(nz0x1,qlogis(w0z0x1))
+ w0z1x0.noisy.odds <- rlogis(nz1x0,qlogis(w0z1x0))
+ w0z1x1.noisy.odds <- rlogis(nz1x1,qlogis(w0z1x1))
+
+ df[(z==0)&(x==0),w:=plogis(w0z0x0.noisy.odds)]
+ df[(z==0)&(x==1),w:=plogis(w0z0x1.noisy.odds)]
+ df[(z==1)&(x==0),w:=plogis(w0z1x0.noisy.odds)]
+ df[(z==1)&(x==1),w:=plogis(w0z1x1.noisy.odds)]
+
+ df[,w_pred:=as.integer(w > 0.5)]
+ print(mean(df[z==0]$x == df[z==0]$w_pred))
+ print(mean(df[z==1]$x == df[z==1]$w_pred))
+ print(mean(df$w_pred == df$x))