-    result <- append(result, list(Bxy.est.loco.mle=coef['x'],
-                                  Bzy.est.loco.mle=coef['z'],
-                                  Bxy.ci.upper.loco.mle = ci.upper['x'],
-                                  Bxy.ci.lower.loco.mle = ci.lower['x'],
-                                  Bzy.ci.upper.loco.mle = ci.upper['z'],
-                                  Bzy.ci.lower.loco.mle = ci.upper['z']))
+    result <- append(result, list(Bxy.est.triple.proxy=coef['x'],
+                                  Bzy.est.triple.proxy=coef['z'],
+                                  Bxy.ci.upper.triple.proxy = ci.upper['x'],
+                                  Bxy.ci.lower.triple.proxy = ci.lower['x'],
+                                  Bzy.ci.upper.triple.proxy = ci.upper['z'],
+                                  Bzy.ci.lower.triple.proxy = ci.lower['z']))
+
+    ## df.loco.mle <- copy(df)
+    ## df.loco.mle[,y.obs:=NA]
+    ## df.loco.mle[(y.obs.0)==(y.obs.1),y.obs:=y.obs.0]
+    ## df.loco.mle[,y.true:=y]
+    ## df.loco.mle[,y:=y.obs]
+    ## print(df.loco.mle[!is.na(y.obs.1),mean(y.true==y,na.rm=TRUE)])
+    ## loco.mle <- measerr_mle_dv(df.loco.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
+    ## fisher.info <- solve(loco.mle$hessian)
+    ## coef <- loco.mle$par
+    ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
+    ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
+
+    ## result <- append(result, list(Bxy.est.loco.mle=coef['x'],
+    ##                               Bzy.est.loco.mle=coef['z'],
+    ##                               Bxy.ci.upper.loco.mle = ci.upper['x'],
+    ##                               Bxy.ci.lower.loco.mle = ci.lower['x'],
+    ##                               Bzy.ci.upper.loco.mle = ci.upper['z'],
+    ##                               Bzy.ci.lower.loco.mle = ci.lower['z']))
+
+