z.true <- summarize.estimator(df, 'true','z')
+ x.naive <- summarize.estimator(df, 'naive','x')
+
+ z.naive <- summarize.estimator(df, 'naive','z')
+
x.loa0.feasible <- summarize.estimator(df, 'loa0.feasible','x')
z.loa0.feasible <- summarize.estimator(df,'loa0.feasible','z')
z.loco.mle <- summarize.estimator(df, 'loco.mle', 'z')
+ x.loco.mle <- summarize.estimator(df, 'loco.mle', 'x')
+
+ z.loco.amelia <- summarize.estimator(df, 'amelia.full', 'z')
+ x.loco.amelia <- summarize.estimator(df, 'amelia.full', 'x')
+
+ z.loco.zhang <- summarize.estimator(df, 'zhang', 'z')
+ x.loco.zhang <- summarize.estimator(df, 'zhang', 'x')
+
+
+ z.loco.gmm <- summarize.estimator(df, 'gmm', 'z')
+ x.loco.gmm <- summarize.estimator(df, 'gmm', 'x')
+
+
+
+
## x.mle <- summarize.estimator(df, 'mle', 'x')
## z.mle <- summarize.estimator(df, 'mle', 'z')
accuracy <- df[,mean(accuracy)]
- plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, x.loco.mle, z.loco.mle),use.names=T)
+ plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, x.loco.mle, z.loco.mle, x.loco.amelia, z.loco.amelia,x.loco.zhang, z.loco.zhang,x.loco.gmm, z.loco.gmm,x.naive,z.naive),use.names=T)
plot.df[,accuracy := accuracy]
plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)]
return(plot.df)
}
-plot.df <- read_feather(args$infile)
-print(unique(plot.df$N))
+sims.df <- read_feather(args$infile)
+print(unique(sims.df$N))
# df <- df[apply(df,1,function(x) !any(is.na(x)))]
-if(!('Bzx' %in% names(plot.df)))
- plot.df[,Bzx:=NA]
+if(!('Bzx' %in% names(sims.df)))
+ sims.df[,Bzx:=NA]
-if(!('accuracy_imbalance_difference' %in% names(plot.df)))
- plot.df[,accuracy_imbalance_difference:=NA]
+if(!('accuracy_imbalance_difference' %in% names(sims.df)))
+ sims.df[,accuracy_imbalance_difference:=NA]
-unique(plot.df[,'accuracy_imbalance_difference'])
+unique(sims.df[,'accuracy_imbalance_difference'])
#plot.df <- build_plot_dataset(df[accuracy_imbalance_difference==0.1][N==700])
-plot.df <- build_plot_dataset(plot.df)
+plot.df <- build_plot_dataset(sims.df)
change.remember.file("remember_irr.RDS",clear=TRUE)
remember(plot.df,args$name)
+
+set.remember.prefix(gsub("plot.df.","",args$name))
+remember(median(sims.df$loco.accuracy),'med.loco.acc')
+
#ggplot(df,aes(x=Bxy.est.mle)) + geom_histogram() + facet_grid(accuracy_imbalance_difference ~ Bzy)
## ## ## df[gmm.ER_pval<0.05]