]> code.communitydata.science - ml_measurement_error_public.git/blobdiff - simulations/summarize_estimator.R
Merge branch 'master' of code:ml_measurement_error_public
[ml_measurement_error_public.git] / simulations / summarize_estimator.R
index f416c5b30bbaf9e664499338fc002bdad42686e0..1e1341d2514096e795fcf6e937de9ab521c39abb 100644 (file)
@@ -9,7 +9,7 @@ summarize.estimator <- function(df, suffix='naive', coefname='x'){
                        )
 
     
-    grouping_vars <- c('N','m','B0', 'Bxy', 'Bzy', 'Bzx', 'Px', 'y_explained_variance', 'prediction_accuracy','outcome_formula','proxy_formula','truth_formula','z_bias','y_bias')
+    grouping_vars <- c('N','m','B0', 'Bxy', 'Bzy', 'Bzx', 'Px', 'Py','y_explained_variance', 'prediction_accuracy','outcome_formula','proxy_formula','truth_formula','z_bias','y_bias')
 
     grouping_vars <- grouping_vars[grouping_vars %in% names(df)]
 
@@ -37,6 +37,8 @@ summarize.estimator <- function(df, suffix='naive', coefname='x'){
                           est.lower.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.025,na.rm=T),
                           mean.ci.upper = mean(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],na.rm=T),
                           mean.ci.lower = mean(.SD[[paste0('B',coefname,'y.ci.lower.',suffix)]],na.rm=T),
+                          median.ci.upper = median(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],na.rm=T),
+                          median.ci.lower = median(.SD[[paste0('B',coefname,'y.ci.lower.',suffix)]],na.rm=T),
                           ci.upper.975 = quantile(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],0.975,na.rm=T),
                           ci.upper.025 = quantile(.SD[[paste0('B',coefname,'y.ci.upper.',suffix)]],0.025,na.rm=T),
                           ci.lower.975 = quantile(.SD[[paste0('B',coefname,'y.ci.lower.',suffix)]],0.975,na.rm=T),

Community Data Science Collective || Want to submit a patch?