]> code.communitydata.science - ml_measurement_error_public.git/blobdiff - simulations/plot_example.R
update real data examples code and rerun project.
[ml_measurement_error_public.git] / simulations / plot_example.R
index 1a4be9b2ab6676ea090bb6030ef96a5c5282f7f1..09d6bf3e7394c95439133896a2404c89e080f671 100644 (file)
@@ -5,272 +5,201 @@ library(ggplot2)
 library(filelock)
 library(argparser)
 
+source("summarize_estimator.R")
+
+
 parser <- arg_parser("Simulate data and fit corrected models.")
-parser <- add_argument(parser, "--infile", default="", help="name of the file to read.")
+parser <- add_argument(parser, "--infile", default="example_2.feather", help="name of the file to read.")
+parser <- add_argument(parser, "--remember-file", default="remembr.RDS", help="name of the remember file.")
 parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.")
 args <- parse_args(parser)
 
-build_plot_dataset <- function(df){
-    x.naive <- df[,.(N, m, Bxy, Bxy.est.naive, Bxy.ci.lower.naive, Bxy.ci.upper.naive)]
-    x.naive <- x.naive[,':='(true.in.ci = as.integer((Bxy >= Bxy.ci.lower.naive) & (Bxy <= Bxy.ci.upper.naive)),
-                             zero.in.ci = (0 >= Bxy.ci.lower.naive) & (0 <= Bxy.ci.upper.naive),
-                             bias = Bxy - Bxy.est.naive,
-                             Bxy.est.naive = Bxy.est.naive,
-                             sign.correct = as.integer(sign(Bxy) == sign(Bxy.est.naive)))]
-
-    x.naive.plot <- x.naive[,.(p.true.in.ci = mean(true.in.ci),
-                               mean.bias = mean(bias),
-                               mean.est = mean(Bxy.est.naive),
-                               var.est = var(Bxy.est.naive),
-                               N.sims = .N,
-                               p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-                               variable='x',
-                               method='Naive'
-                               ),
-                            by=c('N','m')]
+
+
+## summarize.estimator <- function(df, suffix='naive', coefname='x'){
+
+##     part <- df[,c('N',
+##                   'm',
+##                   'Bxy',
+##                   paste0('B',coefname,'y.est.',suffix),
+##                   paste0('B',coefname,'y.ci.lower.',suffix),
+##                   paste0('B',coefname,'y.ci.upper.',suffix),
+##                   'y_explained_variance',
+##                   'Bzx',
+##                   'Bzy',
+##                   'accuracy_imbalance_difference'
+##                   ),
+##                with=FALSE]
+    
+##     true.in.ci <- as.integer((part$Bxy >= part[[paste0('B',coefname,'y.ci.lower.',suffix)]]) & (part$Bxy <= part[[paste0('B',coefname,'y.ci.upper.',suffix)]]))
+##     zero.in.ci <- as.integer(0 >= part[[paste0('B',coefname,'y.ci.lower.',suffix)]]) & (0 <= part[[paste0('B',coefname,'y.ci.upper.',suffix)]])
+##     bias <- part$Bxy - part[[paste0('B',coefname,'y.est.',suffix)]]
+##     sign.correct <- as.integer(sign(part$Bxy) == sign(part[[paste0('B',coefname,'y.est.',suffix)]]))
+
+##     part <- part[,':='(true.in.ci = true.in.ci,
+##                        zero.in.ci = zero.in.ci,
+##                        bias=bias,
+##                        sign.correct =sign.correct)]
+
+##     part.plot <- part[, .(p.true.in.ci = mean(true.in.ci),
+##                           mean.bias = mean(bias),
+##                           mean.est = mean(.SD[[paste0('B',coefname,'y.est.',suffix)]]),
+##                           var.est = var(.SD[[paste0('B',coefname,'y.est.',suffix)]]),
+##                           est.upper.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.95,na.rm=T),
+##                           est.lower.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.05,na.rm=T),
+##                           N.sims = .N,
+##                           p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
+##                           variable=coefname,
+##                           method=suffix
+##                           ),
+##                       by=c("N","m",'y_explained_variance','Bzx', 'Bzy', 'accuracy_imbalance_difference')
+##                       ]
     
+##     return(part.plot)
+## }
 
-    g.naive <- df[,.(N, m, Bgy, Bgy.est.naive, Bgy.ci.lower.naive, Bgy.ci.upper.naive)]
-    g.naive <- g.naive[,':='(true.in.ci = as.integer((Bgy >= Bgy.ci.lower.naive) & (Bgy <= Bgy.ci.upper.naive)),
-                             zero.in.ci = (0 >= Bgy.ci.lower.naive) & (0 <= Bgy.ci.upper.naive),
-                             bias = Bgy - Bgy.est.naive,
-                             Bgy.est.naive = Bgy.est.naive,
-                             sign.correct = as.integer(sign(Bgy) == sign(Bgy.est.naive)))]
-
-    g.naive.plot <- g.naive[,.(p.true.in.ci = mean(true.in.ci),
-                               mean.bias = mean(bias),
-                               mean.est = mean(Bgy.est.naive),
-                               var.est = var(Bgy.est.naive),
-                               N.sims = .N,
-                               p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-                               variable='g',
-                               method='Naive'
-                               ),
-                            by=c('N','m')]
+build_plot_dataset <- function(df){
     
+    x.true <-  summarize.estimator(df, 'true','x')
 
-    x.feasible <- df[,.(N, m, Bxy, Bxy.est.feasible, Bxy.ci.lower.feasible, Bxy.ci.upper.feasible)]
-    x.feasible <- x.feasible[,':='(true.in.ci = as.integer((Bxy >= Bxy.ci.lower.feasible) & (Bxy <= Bxy.ci.upper.feasible)),
-                                   zero.in.ci = (0 >= Bxy.ci.lower.feasible) & (0 <= Bxy.ci.upper.feasible),
-                                   bias = Bxy - Bxy.est.feasible,
-                                   Bxy.est.feasible = Bxy.est.feasible,
-                                   sign.correct = as.integer(sign(Bxy) == sign(Bxy.est.feasible)))]
-
-    x.feasible.plot <- x.feasible[,.(p.true.in.ci = mean(true.in.ci),
-                                     mean.bias = mean(bias),
-                                     mean.est = mean(Bxy.est.feasible),
-                                     var.est = var(Bxy.est.feasible),
-                                     N.sims = .N,
-                                     p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-                                     variable='x',
-                                     method='Feasible'
-                                     ),
-                                  by=c('N','m')]
+    z.true <-  summarize.estimator(df, 'true','z')
+
+    x.naive <- summarize.estimator(df, 'naive','x')
     
+    z.naive <- summarize.estimator(df,'naive','z')
+
+    x.feasible <- summarize.estimator(df, 'feasible', 'x')
 
-    g.feasible <- df[,.(N, m, Bgy, Bgy.est.feasible, Bgy.ci.lower.feasible, Bgy.ci.upper.feasible)]
-    g.feasible <- g.feasible[,':='(true.in.ci = as.integer((Bgy >= Bgy.ci.lower.feasible) & (Bgy <= Bgy.ci.upper.feasible)),
-                                   zero.in.ci = (0 >= Bgy.ci.lower.feasible) & (0 <= Bgy.ci.upper.feasible),
-                                   bias = Bgy - Bgy.est.feasible,
-                                   Bgy.est.feasible = Bgy.est.feasible,
-                                   sign.correct = as.integer(sign(Bgy) == sign(Bgy.est.feasible)))]
-
-    g.feasible.plot <- g.feasible[,.(p.true.in.ci = mean(true.in.ci),
-                                     mean.bias = mean(bias),
-                                     mean.est = mean(Bgy.est.feasible),
-                                     var.est = var(Bgy.est.feasible),
-                                     N.sims = .N,
-                                     p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-                                     variable='g',
-                                     method='Feasible'
-                                     ),
-                                  by=c('N','m')]
+    z.feasible <- summarize.estimator(df, 'feasible', 'z')
+
+    x.amelia.full <- summarize.estimator(df, 'amelia.full', 'x')
+
+    z.amelia.full <- summarize.estimator(df, 'amelia.full', 'z')
     
+    ## x.mecor <- summarize.estimator(df, 'mecor', 'x')
 
+    ## z.mecor <- summarize.estimator(df, 'mecor', 'z')
 
-    x.amelia.full <- df[,.(N, m, Bxy, Bxy.est.true, Bxy.ci.lower.amelia.full, Bxy.ci.upper.amelia.full, Bxy.est.amelia.full)]
-
-    x.amelia.full <- x.amelia.full[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.amelia.full) & (Bxy.est.true <= Bxy.ci.upper.amelia.full),
-                                         zero.in.ci = (0 >= Bxy.ci.lower.amelia.full) & (0 <= Bxy.ci.upper.amelia.full),
-                                         bias = Bxy.est.true - Bxy.est.amelia.full,
-                                         sign.correct = sign(Bxy.est.true) == sign(Bxy.est.amelia.full))]
-
-    x.amelia.full.plot <- x.amelia.full[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
-                                           mean.bias = mean(bias),
-                                           p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-                                           mean.est = mean(Bxy.est.amelia.full),
-                                           var.est = var(Bxy.est.amelia.full),
-                                           N.sims = .N,
-                                           variable='x',
-                                           method='Multiple imputation'
-                                           ),
-                                        by=c('N','m')]
-
-
-    g.amelia.full <- df[,.(N, m, Bgy.est.true, Bgy.est.amelia.full, Bgy.ci.lower.amelia.full, Bgy.ci.upper.amelia.full)]
-    g.amelia.full <- g.amelia.full[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.amelia.full) & (Bgy.est.true <= Bgy.ci.upper.amelia.full),
-                                         zero.in.ci = (0 >= Bgy.ci.lower.amelia.full) & (0 <= Bgy.ci.upper.amelia.full),
-                                         bias =  Bgy.est.amelia.full - Bgy.est.true,
-                                         sign.correct = sign(Bgy.est.true) == sign(Bgy.est.amelia.full))]
-
-    g.amelia.full.plot <- g.amelia.full[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
-                                           mean.bias = mean(bias),
-                                           p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-                                           mean.est = mean(Bgy.est.amelia.full),
-                                           var.est = var(Bgy.est.amelia.full),
-                                           N.sims = .N,
-                                           variable='g',
-                                           method='Multiple imputation'
-                                           ),
-                                        by=c('N','m')]
-
-    ## x.amelia.nok <- df[,.(N, m, Bxy.est.true, Bxy.est.amelia.nok, Bxy.ci.lower.amelia.nok, Bxy.ci.upper.amelia.nok)]
-    ## x.amelia.nok <- x.amelia.nok[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.amelia.nok) & (Bxy.est.true <= Bxy.ci.upper.amelia.nok),
-    ##                                    zero.in.ci = (0 >= Bxy.ci.lower.amelia.nok) & (0 <= Bxy.ci.upper.amelia.nok),
-    ##                                    bias =  Bxy.est.amelia.nok - Bxy.est.true,
-    ##                                    sign.correct = sign(Bxy.est.true) == sign(Bxy.est.amelia.nok))]
-
-    ## x.amelia.nok.plot <- x.amelia.nok[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
-    ##                                      mean.bias = mean(bias),
-    ##                                      p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-    ##                                      mean.est = mean(Bxy.est.amelia.nok),
-    ##                                      var.est = var(Bxy.est.amelia.nok),
-    ##                                      N.sims = .N,
-    ##                                      variable='x',
-    ##                                      method='Multiple imputation (Classifier features unobserved)'
-    ##                                      ),
-    ##                                   by=c('N','m')]
-
-    ## g.amelia.nok <- df[,.(N, m, Bgy.est.true, Bgy.est.amelia.nok, Bgy.ci.lower.amelia.nok, Bgy.ci.upper.amelia.nok)]
-    ## g.amelia.nok <- g.amelia.nok[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.amelia.nok) & (Bgy.est.true <= Bgy.ci.upper.amelia.nok),
-    ##                                    zero.in.ci = (0 >= Bgy.ci.lower.amelia.nok) & (0 <= Bgy.ci.upper.amelia.nok),
-    ##                                    bias =  Bgy.est.amelia.nok - Bgy.est.true,
-    ##                                    sign.correct = sign(Bgy.est.true) == sign(Bgy.est.amelia.nok))]
-
-    ## g.amelia.nok.plot <- g.amelia.nok[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
-    ##                                      mean.bias = mean(bias),
-    ##                                      p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-    ##                                      mean.est = mean(Bgy.est.amelia.nok),
-    ##                                      var.est = var(Bgy.est.amelia.nok),
-    ##                                      N.sims = .N,
-    ##                                      variable='g',
-    ##                                      method="Multiple imputation (Classifier features unobserved)"
-    ##                                      ),
-    ##                                   by=c('N','m')]
-
-
-    x.mecor <- df[,.(N,m,Bxy.est.true, Bxy.est.mecor,Bxy.lower.mecor, Bxy.upper.mecor)]
-
-    x.mecor <- x.mecor[,':='(true.in.ci = (Bxy.est.true >= Bxy.lower.mecor) & (Bxy.est.true <= Bxy.upper.mecor),
-                             zero.in.ci = (0 >= Bxy.lower.mecor) & (0 <= Bxy.upper.mecor),
-                             bias =  Bxy.est.mecor - Bxy.est.true,
-                             sign.correct = sign(Bxy.est.true) == sign(Bxy.est.mecor))]
-
-    x.mecor.plot <- x.mecor[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
-                               mean.bias = mean(bias),
-                               p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-                               mean.est = mean(Bxy.est.mecor),
-                               var.est = var(Bxy.est.mecor),
-                               N.sims = .N,
-                               variable='x',
-                               method='Regression Calibration'
-                               ),
-                            by=c('N','m')]
-
-    g.mecor <- df[,.(N,m,Bgy.est.true, Bgy.est.mecor,Bgy.lower.mecor, Bgy.upper.mecor)]
-
-    g.mecor <- g.mecor[,':='(true.in.ci = (Bgy.est.true >= Bgy.lower.mecor) & (Bgy.est.true <= Bgy.upper.mecor),
-                             zero.in.ci = (0 >= Bgy.lower.mecor) & (0 <= Bgy.upper.mecor),
-                             bias =  Bgy.est.mecor - Bgy.est.true,
-                             sign.correct = sign(Bgy.est.true) == sign(Bgy.est.mecor))]
-
-    g.mecor.plot <- g.mecor[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
-                               mean.bias = mean(bias),
-                               p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-                               mean.est = mean(Bgy.est.mecor),
-                               var.est = var(Bgy.est.mecor),
-                               N.sims = .N,
-                               variable='g',
-                               method='Regression Calibration'
-                               ),
-                            by=c('N','m')]
-
-    ## x.mecor <- df[,.(N,m,Bgy.est.true, Bgy.est.mecor,Bgy.ci.lower.mecor, Bgy.ci.upper.mecor)]
-
-    ## x.mecor <- x.mecor[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.mecor) & (Bgy.est.true <= Bgy.ci.upper.mecor),
-    ##                                      zero.in.ci = (0 >= Bgy.ci.lower.mecor) & (0 <= Bgy.ci.upper.mecor),
-    ##                                      bias =  Bgy.est.mecor - Bgy.est.true,
-    ##                                      sign.correct = sign(Bgy.est.true) == sign(Bgy.est.mecor))]
-
-    ## x.mecor.plot <- x.mecor[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
-    ##                                        mean.bias = mean(bias),
-    ##                                      p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-    ##                                      variable='g',
-    ##                                      method='Regression Calibration'
-    ##                                      ),
-    ##                                     by=c('N','m')]
-
-
-    x.gmm <- df[,.(N,m,Bxy.est.true, Bxy.est.gmm,Bxy.ci.lower.gmm, Bxy.ci.upper.gmm)]
-    x.gmm <- x.gmm[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.gmm) & (Bxy.est.true <= Bxy.ci.upper.gmm),
-                         zero.in.ci = (0 >= Bxy.ci.lower.gmm) & (0 <= Bxy.ci.upper.gmm),
-                         bias =  Bxy.est.gmm - Bxy.est.true,
-                         sign.correct = sign(Bxy.est.true) == sign(Bxy.est.gmm))]
-
-    x.gmm.plot <- x.gmm[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
-                           mean.bias = mean(bias),
-                           p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-                           mean.est = mean(Bxy.est.gmm),
-
-                           var.est = var(Bxy.est.gmm),
-                           N.sims = .N,
-                           variable='x',
-                           method='2SLS+gmm'
-                           ),
-                        by=c('N','m')]
-
-    g.gmm <- df[,.(N,m,Bgy.est.true, Bgy.est.gmm,Bgy.ci.lower.gmm, Bgy.ci.upper.gmm)]
-    g.gmm <- g.gmm[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.gmm) & (Bgy.est.true <= Bgy.ci.upper.gmm),
-                         zero.in.ci = (0 >= Bgy.ci.lower.gmm) & (0 <= Bgy.ci.upper.gmm),
-                         bias =  Bgy.est.gmm - Bgy.est.true,
-                         sign.correct = sign(Bgy.est.true) == sign(Bgy.est.gmm))]
-
-    g.gmm.plot <- g.gmm[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
-                           mean.bias = mean(bias),
-                           p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
-                           mean.est = mean(Bgy.est.gmm),
-                           var.est = var(Bgy.est.gmm),
-                           N.sims = .N,
-                           variable='g',
-                           method='2SLS+gmm'
-                           ),
-                        by=c('N','m')]
+    ## x.mecor <- summarize.estimator(df, 'mecor', 'x')
 
-    accuracy <- df[,mean(accuracy)]
+    ## z.mecor <- summarize.estimator(df, 'mecor', 'z')
 
-    plot.df <- rbindlist(list(x.naive.plot,g.naive.plot,x.amelia.full.plot,g.amelia.full.plot,x.mecor.plot, g.mecor.plot, x.gmm.plot, g.gmm.plot, x.feasible.plot, g.feasible.plot),use.names=T)
+    x.mle <- summarize.estimator(df, 'mle', 'x')
 
-    plot.df[,accuracy := accuracy]
+    z.mle <- summarize.estimator(df, 'mle', 'z')
+    
+    x.zhang <- summarize.estimator(df, 'zhang', 'x')
 
-    plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)]
+    z.zhang <- summarize.estimator(df, 'zhang', 'z')
+
+    x.gmm <- summarize.estimator(df, 'gmm', 'x')
+
+    z.gmm <- summarize.estimator(df, 'gmm', 'z')
 
+    accuracy <- df[,mean(accuracy)]
+    plot.df <- rbindlist(list(x.true,z.true,x.naive,z.naive,x.amelia.full,z.amelia.full,x.gmm, z.gmm, x.feasible, z.feasible,z.mle, x.mle, x.zhang, z.zhang, x.gmm, z.gmm),use.names=T)
+    plot.df[,accuracy := accuracy]
+    plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)]
     return(plot.df)
 }
 
 
-df <- read_feather(args$infile)
-plot.df <- build_plot_dataset(df)
+sims.df <- read_feather(args$infile)
+unique(sims.df[,.N,by=.(N,m)])
+print(unique(sims.df$N))
+
+# df <- df[apply(df,1,function(x) !any(is.na(x)))]
+
+if(!('Bzx' %in% names(sims.df)))
+    sims.df[,Bzx:=NA]
+
+if(!('accuracy_imbalance_difference' %in% names(sims.df)))
+    sims.df[,accuracy_imbalance_difference:=NA]
+
+unique(sims.df[,'accuracy_imbalance_difference'])
+
+change.remember.file(args$remember_file, clear=TRUE)
+#plot.df <- build_plot_dataset(df[accuracy_imbalance_difference==0.1][N==700])
+plot.df <- build_plot_dataset(sims.df)
+
 remember(plot.df,args$name)
 
+set.remember.prefix(gsub("plot.df.","",args$name))
+
+remember(median(sims.df$cor.xz),'med.cor.xz')
+remember(median(sims.df$accuracy),'med.accuracy')
+remember(median(sims.df$accuracy.y0),'med.accuracy.y0')
+remember(median(sims.df$accuracy.y1),'med.accuracy.y1')
+remember(median(sims.df$fpr),'med.fpr')
+remember(median(sims.df$fpr.y0),'med.fpr.y0')
+remember(median(sims.df$fpr.y1),'med.fpr.y1')
+remember(median(sims.df$fnr),'med.fnr')
+remember(median(sims.df$fnr.y0),'med.fnr.y0')
+remember(median(sims.df$fnr.y1),'med.fnr.y1')
+
+remember(median(sims.df$cor.resid.w_pred),'cor.resid.w_pred')
+
+#ggplot(df,aes(x=Bxy.est.mle)) + geom_histogram() + facet_grid(accuracy_imbalance_difference ~ Bzy)
+
+## ## ## df[gmm.ER_pval<0.05]
+
+## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T),
+##                                    N=factor(N),
+##                                    m=factor(m))]
+
+## plot.df.test <- plot.df.test[(variable=='x') & (method!="Multiple imputation (Classifier features unobserved)")]
+## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method))
+## p <- p + geom_hline(data=plot.df.test, mapping=aes(yintercept=0.1),linetype=2)
+
+## p <- p + geom_pointrange() + facet_grid(N~m,as.table=F,scales='free') + scale_x_discrete(labels=label_wrap_gen(4))
+## print(p)
+
+## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T),
+##                                    N=factor(N),
+##                                    m=factor(m))]
+
+## plot.df.test <- plot.df.test[(variable=='z') & (method!="Multiple imputation (Classifier features unobserved)")]
+## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method))
+## p <- p + geom_hline(data=plot.df.test, mapping=aes(yintercept=-0.1),linetype=2)
+
+## p <- p + geom_pointrange() + facet_grid(m~N,as.table=F,scales='free') + scale_x_discrete(labels=label_wrap_gen(4))
+## print(p)
+
+
+## x.mle <- df[,.(N,m,Bxy.est.mle,Bxy.ci.lower.mle, Bxy.ci.upper.mle, y_explained_variance, Bzx, Bzy, accuracy_imbalance_difference)]
+## x.mle.plot <- x.mle[,.(mean.est = mean(Bxy.est.mle),
+##                        var.est = var(Bxy.est.mle),
+##                        N.sims = .N,
+##                        variable='z',
+##                        method='Bespoke MLE'
+##                        ),
+##                     by=c("N","m",'y_explained_variance', 'Bzx', 'Bzy','accuracy_imbalance_difference')]
+
+## z.mle <- df[,.(N,m,Bzy.est.mle,Bzy.ci.lower.mle, Bzy.ci.upper.mle, y_explained_variance, Bzx, Bzy, accuracy_imbalance_difference)]
 
-## df[gmm.ER_pval<0.05]
+## z.mle.plot <- z.mle[,.(mean.est = mean(Bzy.est.mle),
+##                        var.est = var(Bzy.est.mle),
+##                        N.sims = .N,
+##                        variable='z',
+##                        method='Bespoke MLE'
+##                        ),
+##                     by=c("N","m",'y_explained_variance','Bzx')]
 
+## plot.df <- z.mle.plot
+## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T),
+##                                    N=factor(N),
+##                                    m=factor(m))]
 
+## plot.df.test <- plot.df.test[(variable=='z') & (m != 1000) & (m!=500) & (method!="Multiple imputation (Classifier features unobserved)")]
+## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method))
+## p <- p + geom_hline(aes(yintercept=0.2),linetype=2)
 
+## p <- p + geom_pointrange() + facet_grid(m~Bzx, Bzy,as.table=F) + scale_x_discrete(labels=label_wrap_gen(4))
+## print(p)
 
 
-## ggplot(plot.df[variable=='x'], aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method)) + geom_pointrange() + facet_grid(-m~N) + scale_x_discrete(labels=label_wrap_gen(10))
+## ## ggplot(plot.df[variable=='x'], aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method)) + geom_pointrange() + facet_grid(-m~N) + scale_x_discrete(labels=label_wrap_gen(10))
 
-## ggplot(plot.df,aes(y=N,x=m,color=p.sign.correct)) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size") 
+## ## ggplot(plot.df,aes(y=N,x=m,color=p.sign.correct)) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size") 
 
-## ggplot(plot.df,aes(y=N,x=m,color=abs(mean.bias))) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size") 
+## ## ggplot(plot.df,aes(y=N,x=m,color=abs(mean.bias))) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size") 

Community Data Science Collective || Want to submit a patch?