]> code.communitydata.science - ml_measurement_error_public.git/blobdiff - simulations/01_two_covariates.R
real-data example on raw perspective scores
[ml_measurement_error_public.git] / simulations / 01_two_covariates.R
index cd688c7d4b34d2456302299bc284cfedceb2c3f3..1f317be96eaa5ff9cd2803d06afde54e8d6f9f17 100644 (file)
@@ -79,6 +79,7 @@ parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3)
 parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3)
 parser <- add_argument(parser, "--Bxy", help='Effect of x on y', default=0.3)
 parser <- add_argument(parser, "--Px", help='Base rate of x', default=0.5)
+parser <- add_argument(parser, "--confint_method", help='method for approximating confidence intervals', default='quad')
 
 args <- parse_args(parser)
 B0 <- 0
@@ -89,9 +90,9 @@ Bzx <- args$Bzx
 
 df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, Bzx, Px, seed=args$seed + 500, y_explained_variance = args$y_explained_variance,  prediction_accuracy=args$prediction_accuracy)
 
-result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=Bzx, 'Bzy'=Bzy, 'Px'=Px, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, error='')
+result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, 'Bzx'=Bzx, 'Bzy'=Bzy, 'Px'=Px, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, confint_method=args$confint_method,error='')
 
-outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula))
+outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula),confint_method=args$confint_method)
     
 outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
 if(file.exists(args$outfile)){

Community Data Science Collective || Want to submit a patch?