+source("../simulations/RemembR/R/RemembeR.R")
+change.remember.file("iv_perspective_example.RDS")
+
+source('load_perspective_data.R')
+source("../simulations/measerr_methods.R")
+
+remember(accuracies, "civil_comments_accuracies")
+remember(f1s, "civil_comments_f1s")
+remember(positive_cases, "civil_comments_positive_cases")
+remember(proportions_cases, "civil_comments_proportions_cases")
+remember(cortab, "civil_comments_cortab")
+remember(nrow(df), 'n.annotated.comments')
+# for reproducibility
+set.seed(1)
+
+## another simple enough example: is P(toxic | funny and white) > P(toxic | funny nand white)? Or, are funny comments more toxic when people disclose that they are white?
+
+compare_iv_models <-function(pred_formula, outcome_formula, proxy_formula, truth_formula, df, sample.prop, sample.size, remember_prefix){
+
+ if(is.null(sample.prop)){
+ sample.prop <- sample.size / nrow(df)
+ }
+ if(is.null(sample.size)){
+ sample.size <- nrow(df) * sample.prop
+ }
+
+ remember(sample.size, paste0(remember_prefix, "sample.size"))
+ remember(sample.prop, paste0(remember_prefix, "sample.prop"))
+ remember(pred_formula, paste0(remember_prefix, "pred_formula"))
+ remember(outcome_formula, paste0(remember_prefix, 'outcome_formula'))
+ remember(proxy_formula, paste0(remember_prefix, 'proxy_formula'))
+ remember(truth_formula, paste0(remember_prefix, 'truth_formula'))
+
+ pred_model <- glm(pred_formula, df, family=binomial(link='logit'))
+ remember(coef(pred_model), paste0(remember_prefix, "coef_pred_model"))
+ remember(diag(vcov((pred_model))), paste0(remember_prefix, "se_pred_model"))
+
+ coder_model <- glm(outcome_formula, df, family=binomial(link='logit'))
+ remember(coef(coder_model), paste0(remember_prefix, "coef_coder_model"))
+ remember(diag(vcov((coder_model))), paste0(remember_prefix, "se_coder_model"))
+
+ df_measerr_method <- copy(df)[sample(1:.N, sample.size), toxicity_coded_1 := toxicity_coded]
+ df_measerr_method <- df_measerr_method[,toxicity_coded := toxicity_coded_1]
+ sample_model <- glm(outcome_formula, df_measerr_method, family=binomial(link='logit'))
+ remember(coef(sample_model), paste0(remember_prefix, "coef_sample_model"))
+ remember(diag(vcov((sample_model))), paste0(remember_prefix, "se_sample_model"))
+
+ measerr_model <- measerr_mle(df_measerr_method, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula=proxy_formula, proxy_family=binomial(link='logit'),truth_formula=truth_formula, truth_family=binomial(link='logit'))
+
+ inv_hessian = solve(measerr_model$hessian)
+ stderr = diag(inv_hessian)
+ remember(stderr, paste0(remember_prefix, "measerr_model_stderr"))
+ remember(measerr_model$par, paste0(remember_prefix, "measerr_model_par"))
+}
+
+## print("running first iv example")
+
+## sample.prop <- 0.05
+
+## compare_iv_models(white ~ toxicity_pred*funny,
+## outcome_formula = white ~ toxicity_coded*funny,
+## proxy_formula = toxicity_pred ~ toxicity_coded*funny*white,
+## truth_formula = toxicity_coded ~ 1,
+## df=df,
+## sample.prop=sample.prop,
+## remember_prefix='cc_ex_tox.funny.white')
+
+
+
+pred_formula <- race_disclosed ~ likes * toxicity_pred
+outcome_formula <- race_disclosed ~ likes * toxicity_coded
+proxy_formula <- toxicity_pred ~ toxicity_coded * race_disclosed * likes
+truth_formula <- toxicity_coded ~ 1
+
+print("running first example")
+
+compare_iv_models(pred_formula = pred_formula,
+ outcome_formula = outcome_formula,
+ proxy_formula = proxy_formula,
+ truth_formula = truth_formula,
+ df=df,
+ sample.prop=0.01,
+ sample.size=NULL,
+ remember_prefix='cc_ex_tox.likes.race_disclosed')
+
+print("running second example")
+
+compare_iv_models(pred_formula = pred_formula,
+ outcome_formula = outcome_formula,
+ proxy_formula = proxy_formula,
+ truth_formula = truth_formula,
+ df=df,
+ sample.prop=NULL,
+ sample.size=10000,
+ remember_prefix='cc_ex_tox.likes.race_disclosed.medsamp')
+
+print("running third example")
+
+compare_iv_models(pred_formula = race_disclosed ~ likes * toxicity_pred,
+ outcome_formula = race_disclosed ~ likes * toxicity_coded,
+ proxy_formula = toxicity_pred ~ toxicity_coded + race_disclosed,
+ truth_formula = toxicity_coded ~ 1,
+ df=df,
+ sample.prop=0.05,
+ sample.size=NULL,
+ remember_prefix='cc_ex_tox.likes.race_disclosed.largesamp')
+