-### EXAMPLE 2_b: demonstrates how measurement error can lead to a type sign error in a covariate
-### This is the same as example 2, only instead of x->k we have k->x.
-### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign.
-### Even when you include the proxy variable in the regression.
-### But with some ground truth and multiple imputation, you can fix it.
-
-library(argparser)
-library(mecor)
-library(ggplot2)
-library(data.table)
-library(filelock)
-library(arrow)
-library(Amelia)
-library(Zelig)
-library(predictionError)
-options(amelia.parallel="no",
- amelia.ncpus=1)
-
-source("simulation_base.R")
-
-## SETUP:
-### we want to estimate x -> y; x is MAR
-### we have x -> k; k -> w; x -> w is used to predict x via the model w.
-### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments
-### The labels x are binary, but the model provides a continuous predictor
-
-### simulation:
-#### how much power do we get from the model in the first place? (sweeping N and m)
-####
-logistic <- function(x) {1/(1+exp(-1*x))}
-
-simulate_latent_cocause <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){
- set.seed(seed)
-
- ## the true value of x
-
- g <- rbinom(N, 1, 0.5)
- xprime <- Bgx * g + rnorm(N,0,1)
-
- k <- Bkx*xprime + rnorm(N,0,3)
-
- x <- as.integer(logistic(scale(xprime)) > 0.5)
-
- y <- Bxy * x + Bgy * g + rnorm(N, 0, 2) + B0
- df <- data.table(x=x,k=k,y=y,g=g)
-
- if( m < N){
- df <- df[sample(nrow(df), m), x.obs := x]
- } else {
- df <- df[, x.obs := x]
- }
-
- w.model <- glm(x ~ k,df, family=binomial(link='logit'))
- w <- predict(w.model,data.frame(k=k)) + rnorm(N,0,1)
- ## y = B0 + B1x + e
-
- df[,':='(w=w, w_pred = as.integer(w>0.5))]
- return(df)
-}
-
-schennach <- function(df){
-
- fwx <- glm(x.obs~w, df, family=binomial(link='logit'))
- df[,xstar_pred := predict(fwx, df)]
- gxt <- lm(y ~ xstar_pred+g, df)
-
-}
-
-parser <- arg_parser("Simulate data and fit corrected models")
-parser <- add_argument(parser, "--N", default=100, help="number of observations of w")
-parser <- add_argument(parser, "--m", default=20, help="m the number of ground truth observations")
-parser <- add_argument(parser, "--seed", default=4321, help='seed for the rng')
-parser <- add_argument(parser, "--outfile", help='output file', default='example_2_B.feather')
-args <- parse_args(parser)
-
-rows <- list()
-
-B0 <- 0
-Bxy <- 0.2
-Bgy <- -0.2
-Bkx <- 1
-Bgx <- 3
-
-outline <- run_simulation(simulate_latent_cocause(args$N, args$m, B0, Bxy, Bgy, Bkx, Bgx, args$seed)
- ,list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bkx'=Bkx, 'Bgx'=Bgx, 'seed'=args$seed))
-
-outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
-if(file.exists(args$outfile)){
- logdata <- read_feather(args$outfile)
- logdata <- rbind(logdata,as.data.table(outline))
-} else {
- logdata <- as.data.table(outline)
-}
-
-print(outline)
-write_feather(logdata, args$outfile)
-unlock(outfile_lock)
-
-## Ns <- c(1e6, 5e4, 1000)
-## ms <- c(100, 250, 500, 1000)
-## seeds <- 1:500
-
-## rowssets <- list()
-## library(doParallel)
-## options(mc.cores = parallel::detectCores())
-## cl <- makeCluster(20)
-## registerDoParallel(cl)
-
-## ## library(future)
-
-## ## plan(multiprocess,workers=40,gc=TRUE)
-
-## for(N in Ns){
-## print(N)
-## for(m in ms){
-## if(N>m){
-## new.rows <- foreach(iter=seeds, .combine=rbind, .packages = c('mecor','Amelia','Zelig','predictionError','data.table'),
-## .export = c("run_simulation","simulate_latent_cocause","logistic","N","m","B0","Bxy","Bgy","Bkx","Bgx")) %dopar%
-
-## {run_simulation(simulate_latent_cocause(N, m, B0, Bxy, Bgy, Bkx, Bgx, iter)
-## ,list('N'=N,'m'=m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bkx'=Bkx, 'Bgx'=Bgx, 'seed'=iter))}
-## rowsets <- append(rowssets, list(data.table(new.rows)))
-## }
-
-## }
-## ## rows <- append(rows, list(future({run_simulation(simulate_latent_cocause(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed)
-## }
- ## ,list(N=N,m=m,B0=B0,Bxy=Bxy,Bgy=Bgy, Bkx=Bkx, Bgx=Bgx, seed=seed))w},
- ## packages=c('mecor','Amelia','Zelig','predictionError'),
- ## seed=TRUE)))
-
-
-## df <- rbindlist(rowsets)
-
-## write_feather(df,"example_2B_simulation.feather")
-
-## run_simulation <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){
-## result <- list()
-## df <- simulate_latent_cocause(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed)
-
-## result <- append(result, list(N=N,
-## m=m,
-## B0=B0,
-## Bxy=Bxy,
-## Bgy=Bgy,
-## Bkx=Bkx,
-## seed=seed))
-
-## (accuracy <- df[,.(mean(w_pred==x))])
-## result <- append(result, list(accuracy=accuracy))
-
-## (model.true <- lm(y ~ x + g, data=df))
-## true.ci.Bxy <- confint(model.true)['x',]
-## true.ci.Bgy <- confint(model.true)['g',]
-
-## result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
-## Bgy.est.true=coef(model.true)['g'],
-## Bxy.ci.upper.true = true.ci.Bxy[2],
-## Bxy.ci.lower.true = true.ci.Bxy[1],
-## Bgy.ci.upper.true = true.ci.Bgy[2],
-## Bgy.ci.lower.true = true.ci.Bgy[1]))
-
-## (model.feasible <- lm(y~x.obs+g,data=df))
-
-## feasible.ci.Bxy <- confint(model.feasible)['x.obs',]
-## result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x.obs'],
-## Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
-## Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
-
-## feasible.ci.Bgy <- confint(model.feasible)['g',]
-## result <- append(result, list(Bgy.est.feasible=coef(model.feasible)['g'],
-## Bgy.ci.upper.feasible = feasible.ci.Bgy[2],
-## Bgy.ci.lower.feasible = feasible.ci.Bgy[1]))
-
-## (model.naive <- lm(y~w+g, data=df))
-
-## naive.ci.Bxy <- confint(model.naive)['w',]
-## naive.ci.Bgy <- confint(model.naive)['g',]
-
-## result <- append(result, list(Bxy.est.naive=coef(model.naive)['w'],
-## Bgy.est.naive=coef(model.naive)['g'],
-## Bxy.ci.upper.naive = naive.ci.Bxy[2],
-## Bxy.ci.lower.naive = naive.ci.Bxy[1],
-## Bgy.ci.upper.naive = naive.ci.Bgy[2],
-## Bgy.ci.lower.naive = naive.ci.Bgy[1]))
-
-
-## ## multiple imputation when k is observed
-## ## amelia does great at this one.
-## amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w_pred'),noms=c("x.obs","g"),lgstc=c('w'))
-## mod.amelia.k <- zelig(y~x.obs+g, model='ls', data=amelia.out.k$imputations, cite=FALSE)
-## (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
-
-## est.x.mi <- coefse['x.obs','Estimate']
-## est.x.se <- coefse['x.obs','Std.Error']
-## result <- append(result,
-## list(Bxy.est.amelia.full = est.x.mi,
-## Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
-## Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
-## ))
-
-## est.g.mi <- coefse['g','Estimate']
-## est.g.se <- coefse['g','Std.Error']
-
-## result <- append(result,
-## list(Bgy.est.amelia.full = est.g.mi,
-## Bgy.ci.upper.amelia.full = est.g.mi + 1.96 * est.g.se,
-## Bgy.ci.lower.amelia.full = est.g.mi - 1.96 * est.g.se
-## ))
-
-## ## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model.
-## amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","k"), noms=c("x.obs",'g'),lgstc = c("w"))
-## mod.amelia.nok <- zelig(y~x.obs+g, model='ls', data=amelia.out.nok$imputations, cite=FALSE)
-## (coefse <- combine_coef_se(mod.amelia.nok, messages=FALSE))
-
-## est.x.mi <- coefse['x.obs','Estimate']
-## est.x.se <- coefse['x.obs','Std.Error']
-## result <- append(result,
-## list(Bxy.est.amelia.nok = est.x.mi,
-## Bxy.ci.upper.amelia.nok = est.x.mi + 1.96 * est.x.se,
-## Bxy.ci.lower.amelia.nok = est.x.mi - 1.96 * est.x.se
-## ))
-
-## est.g.mi <- coefse['g','Estimate']
-## est.g.se <- coefse['g','Std.Error']
-
-## result <- append(result,
-## list(Bgy.est.amelia.nok = est.g.mi,
-## Bgy.ci.upper.amelia.nok = est.g.mi + 1.96 * est.g.se,
-## Bgy.ci.lower.amelia.nok = est.g.mi - 1.96 * est.g.se
-## ))
-
-## p <- v <- train <- rep(0,N)
-## M <- m
-## p[(M+1):(N)] <- 1
-## v[1:(M)] <- 1
-## df <- df[order(x.obs)]
-## y <- df[,y]
-## x <- df[,x.obs]
-## g <- df[,g]
-## w <- df[,w]
-## # gmm gets pretty close
-## (gmm.res <- predicted_covariates(y, x, g, w, v, train, p, max_iter=100, verbose=FALSE))
-
-## result <- append(result,
-## list(Bxy.est.gmm = gmm.res$beta[1,1],
-## Bxy.ci.upper.gmm = gmm.res$confint[1,2],
-## Bxy.ci.lower.gmm = gmm.res$confint[1,1]))
-
-## result <- append(result,
-## list(Bgy.est.gmm = gmm.res$beta[2,1],
-## Bgy.ci.upper.gmm = gmm.res$confint[2,2],
-## Bgy.ci.lower.gmm = gmm.res$confint[2,1]))
-
-
-## mod.calibrated.mle <- mecor(y ~ MeasError(w, reference = x.obs) + g, df, B=400, method='efficient')
-## (mod.calibrated.mle)
-## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',])
-## result <- append(result, list(
-## Bxy.est.mecor = mecor.ci['Estimate'],
-## Bxy.upper.mecor = mecor.ci['UCI'],
-## Bxy.lower.mecor = mecor.ci['LCI'])
-## )
-
-## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['g',])
-
-## result <- append(result, list(
-## Bxy.est.mecor = mecor.ci['Estimate'],
-## Bxy.upper.mecor = mecor.ci['UCI'],
-## Bxy.lower.mecor = mecor.ci['LCI'])
-## )
-
-
-## return(result)
-## }
-