]> code.communitydata.science - stats_class_2019.git/blob - r_lectures/w06-R_lecture.Rmd
56c75cf03111849524dfade77420a34f2c7b9c49
[stats_class_2019.git] / r_lectures / w06-R_lecture.Rmd
1 ---
2 title: "Week 6 R lecture"
3 subtitle: "Statistics and statistical programming  \nNorthwestern University  \nMTS 525"
4 author: "Aaron Shaw"
5 date: "May 3, 2019"
6 output: html_document
7 ---
8
9 ```{r setup, include=FALSE}
10 knitr::opts_chunk$set(echo = TRUE)
11 ```
12
13 ## T-tests
14 You learned the theory/concepts behind t-tests last week, so here's a brief run-down on how to use built-in functions in R to conduct them and interpret the results.
15
16 ## ANOVAs
17
18 Analogous situation with t-tests. Here's a brief introduction to how they work in R.
19
20 ## Visualizing confidence intervals
21
22 We spent a lot of time on confidence intervals in the past few weeks. Since they can be so useful, surely we should learn some approaches to incorporating them into data visualizations.
23
24 ## Date/time arithmetic
25
26 Last, but not least, another wrinkle in time...or at least how to manage date-time objects in R.

Community Data Science Collective || Want to submit a patch?