1 from sklearn.metrics import silhouette_score
2 from sklearn.cluster import AffinityPropagation
3 from functools import partial
4 from clustering import _affinity_clustering, read_similarity_mat
5 from dataclasses import dataclass
6 from multiprocessing import Pool, cpu_count, Array, Process
7 from pathlib import Path
8 from itertools import product, starmap
14 # silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.
17 class clustering_result:
22 preference_quantile:float
23 silhouette_score:float
24 alt_silhouette_score:float
31 np.fill_diagonal(dist,0)
34 def do_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits, max_iter, outdir:Path, random_state, verbose, alt_mat, overwrite=False):
36 name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{preference_quantile}"
39 outpath = outdir / (str(name) + ".feather")
41 clustering = _affinity_clustering(mat, subreddits, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose)
42 mat = sim_to_dist(clustering.affinity_matrix_)
44 score = silhouette_score(mat, clustering.labels_, metric='precomputed')
46 if alt_mat is not None:
47 alt_distances = sim_to_dist(alt_mat)
48 alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed')
50 res = clustering_result(outpath=outpath,
53 convergence_iter=convergence_iter,
54 preference_quantile=preference_quantile,
55 silhouette_score=score,
56 alt_silhouette_score=score,
61 # alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering).
63 def select_affinity_clustering(similarities, outdir, outinfo, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None):
65 damping = list(map(float,damping))
66 convergence_iter = convergence_iter = list(map(int,convergence_iter))
67 preference_quantile = list(map(float,preference_quantile))
69 if type(outdir) is str:
72 outdir.mkdir(parents=True,exist_ok=True)
74 subreddits, mat = read_similarity_mat(similarities,use_threads=True)
76 if alt_similarities is not None:
77 alt_mat = read_similarity_mat(alt_similarities,use_threads=True)
85 # get list of tuples: the combinations of hyperparameters
86 hyper_grid = product(damping, convergence_iter, preference_quantile)
87 hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid))
89 _do_clustering = partial(do_clustering, mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat)
91 # similarities = Array('d', mat)
93 print("running clustering selection")
94 clustering_data = pool.starmap(_do_clustering, hyper_grid)
95 clustering_data = pd.DataFrame(list(clustering_data))
96 clustering_data.to_csv(outinfo)
98 return clustering_data
100 if __name__ == "__main__":
101 x = fire.Fire(select_affinity_clustering)