]> code.communitydata.science - cdsc_reddit.git/blob - clustering/selection.py
bugfixes in clustering selection.
[cdsc_reddit.git] / clustering / selection.py
1 from sklearn.metrics import silhouette_score
2 from sklearn.cluster import AffinityPropagation
3 from functools import partial
4 from clustering import _affinity_clustering, read_similarity_mat
5 from dataclasses import dataclass
6 from multiprocessing  import Pool, cpu_count, Array, Process
7 from pathlib import Path
8 from itertools import product, starmap
9 import numpy as np
10 import pandas as pd
11 import fire
12 import sys
13
14 # silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying. 
15
16 @dataclass
17 class clustering_result:
18     outpath:Path
19     damping:float
20     max_iter:int
21     convergence_iter:int
22     preference_quantile:float
23     silhouette_score:float
24     alt_silhouette_score:float
25     name:str
26
27
28 def sim_to_dist(mat):
29     dist = 1-mat
30     dist[dist < 0] = 0
31     np.fill_diagonal(dist,0)
32     return dist
33
34 def do_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits,  max_iter,  outdir:Path, random_state, verbose, alt_mat, overwrite=False):
35     if name is None:
36         name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{preference_quantile}"
37     print(name)
38     sys.stdout.flush()
39     outpath = outdir / (str(name) + ".feather")
40     print(outpath)
41     clustering = _affinity_clustering(mat, subreddits, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose)
42     mat = sim_to_dist(clustering.affinity_matrix_)
43
44     score = silhouette_score(mat, clustering.labels_, metric='precomputed')
45
46     if alt_mat is not None:
47         alt_distances = sim_to_dist(alt_mat)
48         alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed')
49     
50     res = clustering_result(outpath=outpath,
51                             damping=damping,
52                             max_iter=max_iter,
53                             convergence_iter=convergence_iter,
54                             preference_quantile=preference_quantile,
55                             silhouette_score=score,
56                             alt_silhouette_score=score,
57                             name=str(name))
58
59     return res
60
61 # alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering).
62
63 def select_affinity_clustering(similarities, outdir, outinfo, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None):
64
65     damping = list(map(float,damping))
66     convergence_iter = convergence_iter = list(map(int,convergence_iter))
67     preference_quantile = list(map(float,preference_quantile))
68
69     if type(outdir) is str:
70         outdir = Path(outdir)
71
72     outdir.mkdir(parents=True,exist_ok=True)
73
74     subreddits, mat = read_similarity_mat(similarities,use_threads=True)
75
76     if alt_similarities is not None:
77         alt_mat = read_similarity_mat(alt_similarities,use_threads=True)
78     else:
79         alt_mat = None
80
81     if J is None:
82         J = cpu_count()
83     pool = Pool(J)
84
85     # get list of tuples: the combinations of hyperparameters
86     hyper_grid = product(damping, convergence_iter, preference_quantile)
87     hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid))
88
89     _do_clustering = partial(do_clustering,  mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat)
90
91     #    similarities = Array('d', mat)
92     # call pool.starmap
93     print("running clustering selection")
94     clustering_data = pool.starmap(_do_clustering, hyper_grid)
95     clustering_data = pd.DataFrame(list(clustering_data))
96     clustering_data.to_csv(outinfo)
97     
98     return clustering_data
99
100 if __name__ == "__main__":
101     x = fire.Fire(select_affinity_clustering)

Community Data Science Collective || Want to submit a patch?