1 from pyspark.sql import functions as f
2 from pyspark.sql import SparkSession
3 from pyspark.sql import Window
8 from itertools import islice
9 from pathlib import Path
10 from similarities_helper import cosine_similarities
12 spark = SparkSession.builder.getOrCreate()
13 conf = spark.sparkContext.getConf()
15 # outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
16 def author_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True):
18 Compute similarities between subreddits based on tfi-idf vectors of author comments
20 included_subreddits : string
21 Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
23 similarity_threshold : double (default = 0)
24 set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm
25 https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm.
27 min_df : int (default = 0.1 * (number of included_subreddits)
28 exclude terms that appear in fewer than this number of documents.
31 where to output csv and feather outputs
35 print(exclude_phrases)
37 tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_authors.parquet_test1/part-00000-107cee94-92d8-4265-b804-40f1e7f1aaf2-c000.snappy.parquet')
39 if included_subreddits is None:
40 included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
41 included_subreddits = {s.strip('\n') for s in included_subreddits}
44 included_subreddits = set(open(included_subreddits))
46 sim_dist, tfidf = cosine_similarities(tfidf, 'author', min_df, included_subreddits, similarity_threshold)
50 output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
51 output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
52 output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
53 sim_dist = sim_dist.entries.toDF()
55 sim_dist = sim_dist.repartition(1)
56 sim_dist.write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
60 #instead of toLocalMatrix() why not read as entries and put strait into numpy
61 sim_entries = pd.read_parquet(output_parquet)
63 df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
64 df['subreddit_id_new'] = df['subreddit_id_new'] - 1
65 df = df.sort_values('subreddit_id_new').reset_index(drop=True)
66 df = df.set_index('subreddit_id_new')
68 similarities = sim_entries.join(df, on='i')
69 similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
70 similarities = similarities.join(df, on='j')
71 similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
73 similarities.write_feather(output_feather)
74 similarities.write_csv(output_csv)
77 if __name__ == '__main__':
78 fire.Fire(term_cosine_similarities)