1 from pyspark.sql import functions as f
2 from pyspark.sql import SparkSession
3 from pyspark.sql import Window
8 from itertools import islice
9 from pathlib import Path
10 from similarities_helper import cosine_similarities, prep_tfidf_entries, read_tfidf_matrix, column_similarities
12 spark = SparkSession.builder.getOrCreate()
13 conf = spark.sparkContext.getConf()
15 # outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
16 def author_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500):
18 Compute similarities between subreddits based on tfi-idf vectors of author comments
20 included_subreddits : string
21 Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
23 similarity_threshold : double (default = 0)
24 set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm
25 https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm.
27 min_df : int (default = 0.1 * (number of included_subreddits)
28 exclude terms that appear in fewer than this number of documents.
31 where to output csv and feather outputs
34 spark = SparkSession.builder.getOrCreate()
35 conf = spark.sparkContext.getConf()
38 tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_authors.parquet')
40 if included_subreddits is None:
41 rankdf = pd.read_csv("/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv")
42 included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
45 included_subreddits = set(open(included_subreddits))
47 print("creating temporary parquet with matrix indicies")
48 tempdir = prep_tfidf_entries(tfidf, 'author', min_df, included_subreddits)
49 tfidf = spark.read.parquet(tempdir.name)
50 subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
51 subreddit_names = subreddit_names.sort_values("subreddit_id_new")
52 subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
55 print("loading matrix")
56 mat = read_tfidf_matrix(tempdir.name,'author')
57 print('computing similarities')
58 sims = column_similarities(mat)
61 sims = pd.DataFrame(sims.todense())
62 sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)},axis=1)
63 sims['subreddit'] = subreddit_names.subreddit.values
67 output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
68 output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
69 output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
71 sims.to_feather(outfile)
76 # tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_authors.parquet')
78 # if included_subreddits is None:
79 # included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
80 # included_subreddits = {s.strip('\n') for s in included_subreddits}
83 # included_subreddits = set(open(included_subreddits))
85 # sim_dist, tfidf = cosine_similarities(tfidf, 'author', min_df, included_subreddits, similarity_threshold)
89 # output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
90 # output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
91 # output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
92 # sim_dist = sim_dist.entries.toDF()
94 # sim_dist = sim_dist.repartition(1)
95 # sim_dist.write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
99 # #instead of toLocalMatrix() why not read as entries and put strait into numpy
100 # sim_entries = pd.read_parquet(output_parquet)
102 # df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
105 # df['subreddit_id_new'] = df['subreddit_id_new'] - 1
106 # df = df.sort_values('subreddit_id_new').reset_index(drop=True)
107 # df = df.set_index('subreddit_id_new')
109 # similarities = sim_entries.join(df, on='i')
110 # similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
111 # similarities = similarities.join(df, on='j')
112 # similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
114 # similarities.to_feather(output_feather)
115 # similarities.to_csv(output_csv)
116 # return similarities
118 if __name__ == '__main__':
119 fire.Fire(author_cosine_similarities)