1 from hdbscan_clustering import hdbscan_job, hdbscan_grid_sweep, hdbscan_clustering_result
2 from lsi_base import lsi_grid_sweep, lsi_mixin, lsi_result_mixin
3 from grid_sweep import grid_sweep
5 from dataclasses import dataclass
8 class hdbscan_clustering_result_lsi(hdbscan_clustering_result, lsi_result_mixin):
11 class hdbscan_lsi_job(hdbscan_job, lsi_mixin):
12 def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs):
19 super().set_lsi_dims(lsi_dims)
22 partial_result = super().get_info()
23 self.result = hdbscan_clustering_result_lsi(**partial_result.__dict__,
24 lsi_dimensions=self.lsi_dims)
27 class hdbscan_lsi_grid_sweep(lsi_grid_sweep):
34 cluster_selection_epsilons,
35 cluster_selection_methods
38 super().__init__(hdbscan_lsi_job,
39 _hdbscan_lsi_grid_sweep,
45 cluster_selection_epsilons,
46 cluster_selection_methods)
50 class _hdbscan_lsi_grid_sweep(grid_sweep):
60 self.lsi_dim = lsi_dim
61 self.jobtype = hdbscan_lsi_job
62 super().__init__(self.jobtype, inpath, outpath, self.namer, self.lsi_dim, *args, **kwargs)
65 def namer(self, *args, **kwargs):
66 s = hdbscan_grid_sweep.namer(self, *args[1:], **kwargs)
67 s += f"_lsi-{self.lsi_dim}"
70 def run_hdbscan_lsi_grid_sweep(savefile, inpath, outpath, min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom'],lsi_dimensions='all'):
71 """Run hdbscan clustering once or more with different parameters.
74 hdbscan_clustering_lsi --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=[eom]> --lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
77 savefile: path to save the metadata and diagnostics
78 inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities.
79 outpath: path to output fit clusterings.
80 min_cluster_sizes: one or more integers indicating the minumum cluster size
81 min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
82 cluster_selection_epsilons: one or more similarity thresholds for transition from dbscan to hdbscan
83 cluster_selection_methods: one or more of "eom" or "leaf" eom gives larger clusters.
84 lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
87 obj = hdbscan_lsi_grid_sweep(inpath,
90 map(int,min_cluster_sizes),
92 map(float,cluster_selection_epsilons),
93 cluster_selection_methods
100 if __name__ == "__main__":
101 fire.Fire(run_hdbscan_lsi_grid_sweep)