1 from pyspark.sql import functions as f
 
   2 from pyspark.sql import SparkSession
 
   4 spark = SparkSession.builder.getOrCreate()
 
   5 df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/")
 
   7 max_subreddit_week_authors = df.groupby(['subreddit','week']).max('tf')
 
   8 max_subreddit_week_authors = max_subreddit_week_authors.withColumnRenamed('max(tf)','sr_week_max_tf')
 
  10 df = df.join(max_subreddit_week_authors, ['subreddit','week'])
 
  12 df = df.withColumn("relative_tf", df.tf / df.sr_week_max_tf)
 
  14 # group by term / week
 
  15 idf = df.groupby(['author','week']).count()
 
  17 idf = idf.withColumnRenamed('count','idf')
 
  19 # output: term | week | df
 
  20 #idf.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy')
 
  22 # collect the dictionary to make a pydict of terms to indexes
 
  23 authors = idf.select('author').distinct()
 
  24 authors = authors.withColumn('author_id',f.monotonically_increasing_id())
 
  27 # map terms to indexes in the tfs and the idfs
 
  28 df = df.join(authors,on='author')
 
  30 idf = idf.join(authors,on='author')
 
  32 # join on subreddit/term/week to create tf/dfs indexed by term
 
  33 df = df.join(idf, on=['author_id','week','author'])
 
  35 # agg terms by subreddit to make sparse tf/df vectors
 
  36 df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf)
 
  38 df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('author_id','tf_idf')).alias('tfidf_maps'))
 
  40 df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps'))
 
  42 # output: subreddit | week | tf/df
 
  43 df.write.json('/gscratch/comdata/users/nathante/test_tfidf_authors.parquet',mode='overwrite',compression='snappy')