1 from pyspark.sql import SparkSession
2 from pyspark.sql import Window
3 from pyspark.sql import functions as f
5 from pyspark.mllib.linalg.distributed import CoordinateMatrix
6 from tempfile import TemporaryDirectory
8 import pyarrow.dataset as ds
9 from scipy.sparse import csr_matrix, issparse
13 from datetime import datetime
14 from pathlib import Path
16 class tf_weight(Enum):
20 infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet"
22 def reindex_tfidf_time_interval(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
24 term_id = term + '_id'
25 term_id_new = term + '_id_new'
27 spark = SparkSession.builder.getOrCreate()
28 conf = spark.sparkContext.getConf()
29 print(exclude_phrases)
30 tfidf_weekly = spark.read.parquet(infile)
32 # create the time interval
33 if from_date is not None:
34 if type(from_date) is str:
35 from_date = datetime.fromisoformat(from_date)
37 tfidf_weekly = tfidf_weekly.filter(tfidf_weekly.week >= from_date)
39 if to_date is not None:
40 if type(to_date) is str:
41 to_date = datetime.fromisoformat(to_date)
42 tfidf_weekly = tfidf_weekly.filter(tfidf_weekly.week < to_date)
44 tfidf = tfidf_weekly.groupBy(["subreddit","week", term_id, term]).agg(f.sum("tf").alias("tf"))
45 tfidf = _calc_tfidf(tfidf, term_colname, tf_weight.Norm05)
46 tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits)
47 tfidf = spark.read_parquet(tempdir.name)
48 subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
49 subreddit_names = subreddit_names.sort_values("subreddit_id_new")
50 subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
51 return(tempdir, subreddit_names)
53 def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
54 spark = SparkSession.builder.getOrCreate()
55 conf = spark.sparkContext.getConf()
56 print(exclude_phrases)
58 tfidf = spark.read.parquet(infile)
60 if included_subreddits is None:
61 included_subreddits = select_topN_subreddits(topN)
63 included_subreddits = set(open(included_subreddits))
65 if exclude_phrases == True:
66 tfidf = tfidf.filter(~f.col(term_colname).contains("_"))
68 print("creating temporary parquet with matrix indicies")
69 tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits)
71 tfidf = spark.read.parquet(tempdir.name)
72 subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
73 subreddit_names = subreddit_names.sort_values("subreddit_id_new")
74 subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
76 return (tempdir, subreddit_names)
79 def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None, tfidf_colname='tf_idf'):
81 tfidf_colname: set to 'relative_tf' to use normalized term frequency instead of tf-idf, which can be useful for author-based similarities.
83 if from_date is not None or to_date is not None:
84 tempdir, subreddit_names = reindex_tfidf_time_interval(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False, from_date=from_date, to_date=to_date)
87 tempdir, subreddit_names = reindex_tfidf(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False)
89 print("loading matrix")
90 # mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname)
91 mat = read_tfidf_matrix(tempdir.name, term_colname, tfidf_colname)
92 print(f'computing similarities on mat. mat.shape:{mat.shape}')
93 print(f"size of mat is:{mat.data.nbytes}")
100 print(f"shape of sims:{sims.shape}")
101 print(f"len(subreddit_names.subreddit.values):{len(subreddit_names.subreddit.values)}")
102 sims = pd.DataFrame(sims)
103 sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
104 sims['subreddit'] = subreddit_names.subreddit.values
108 output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
109 output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
110 output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
112 sims.to_feather(outfile)
115 def read_tfidf_matrix_weekly(path, term_colname, week, tfidf_colname='tf_idf'):
117 term_id = term + '_id'
118 term_id_new = term + '_id_new'
120 dataset = ds.dataset(path,format='parquet')
121 entries = dataset.to_table(columns=[tfidf_colname,'subreddit_id_new', term_id_new],filter=ds.field('week')==week).to_pandas()
122 return(csr_matrix((entries[tfidf_colname], (entries[term_id_new]-1, entries.subreddit_id_new-1))))
124 def read_tfidf_matrix(path, term_colname, tfidf_colname='tf_idf'):
126 term_id = term + '_id'
127 term_id_new = term + '_id_new'
128 dataset = ds.dataset(path,format='parquet')
129 print(f"tfidf_colname:{tfidf_colname}")
130 entries = dataset.to_table(columns=[tfidf_colname, 'subreddit_id_new',term_id_new]).to_pandas()
131 return(csr_matrix((entries[tfidf_colname],(entries[term_id_new]-1, entries.subreddit_id_new-1))))
134 def write_weekly_similarities(path, sims, week, names):
136 p = pathlib.Path(path)
140 # reformat as a pairwise list
141 sims = sims.melt(id_vars=['subreddit','week'],value_vars=names.subreddit.values)
142 sims.to_parquet(p / week.isoformat())
144 def column_overlaps(mat):
145 non_zeros = (mat != 0).astype('double')
147 intersection = non_zeros.T @ non_zeros
148 card1 = non_zeros.sum(axis=0)
149 den = np.add.outer(card1,card1) - intersection
151 return intersection / den
153 def column_similarities(mat):
154 norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32))
155 mat = mat.multiply(1/norm)
160 def prep_tfidf_entries_weekly(tfidf, term_colname, min_df, max_df, included_subreddits):
162 term_id = term + '_id'
163 term_id_new = term + '_id_new'
166 min_df = 0.1 * len(included_subreddits)
167 tfidf = tfidf.filter(f.col('count') >= min_df)
168 if max_df is not None:
169 tfidf = tfidf.filter(f.col('count') <= max_df)
171 tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
173 # we might not have the same terms or subreddits each week, so we need to make unique ids for each week.
174 sub_ids = tfidf.select(['subreddit_id','week']).distinct()
175 sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.partitionBy('week').orderBy("subreddit_id")))
176 tfidf = tfidf.join(sub_ids,['subreddit_id','week'])
178 # only use terms in at least min_df included subreddits in a given week
179 new_count = tfidf.groupBy([term_id,'week']).agg(f.count(term_id).alias('new_count'))
180 tfidf = tfidf.join(new_count,[term_id,'week'],how='inner')
183 term_ids = tfidf.select([term_id,'week']).distinct()
184 term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.partitionBy('week').orderBy(term_id)))
185 tfidf = tfidf.join(term_ids,[term_id,'week'])
187 tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
188 tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
190 tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
192 tfidf = tfidf.repartition('week')
194 tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
198 def prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits):
200 term_id = term + '_id'
201 term_id_new = term + '_id_new'
204 min_df = 0.1 * len(included_subreddits)
205 tfidf = tfidf.filter(f.col('count') >= min_df)
206 if max_df is not None:
207 tfidf = tfidf.filter(f.col('count') <= max_df)
209 tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
211 # reset the subreddit ids
212 sub_ids = tfidf.select('subreddit_id').distinct()
213 sub_ids = sub_ids.withColumn("subreddit_id_new", f.row_number().over(Window.orderBy("subreddit_id")))
214 tfidf = tfidf.join(sub_ids,'subreddit_id')
216 # only use terms in at least min_df included subreddits
217 new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
218 tfidf = tfidf.join(new_count,term_id,how='inner')
221 term_ids = tfidf.select([term_id]).distinct()
222 term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
223 tfidf = tfidf.join(term_ids,term_id)
225 tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
226 tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
228 tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
230 tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
234 # try computing cosine similarities using spark
235 def spark_cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold):
237 term_id = term + '_id'
238 term_id_new = term + '_id_new'
241 min_df = 0.1 * len(included_subreddits)
243 tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
244 tfidf = tfidf.cache()
246 # reset the subreddit ids
247 sub_ids = tfidf.select('subreddit_id').distinct()
248 sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
249 tfidf = tfidf.join(sub_ids,'subreddit_id')
251 # only use terms in at least min_df included subreddits
252 new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
253 tfidf = tfidf.join(new_count,term_id,how='inner')
256 term_ids = tfidf.select([term_id]).distinct()
257 term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
258 tfidf = tfidf.join(term_ids,term_id)
260 tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
261 tfidf = tfidf.withColumn("tf_idf", tfidf.relative_tf * tfidf.idf)
263 # step 1 make an rdd of entires
264 # sorted by (dense) spark subreddit id
265 n_partitions = int(len(included_subreddits)*2 / 5)
267 entries = tfidf.select(f.col(term_id_new)-1,f.col("subreddit_id_new")-1,"tf_idf").rdd.repartition(n_partitions)
269 # put like 10 subredis in each partition
271 # step 2 make it into a distributed.RowMatrix
272 coordMat = CoordinateMatrix(entries)
274 coordMat = CoordinateMatrix(coordMat.entries.repartition(n_partitions))
276 # this needs to be an IndexedRowMatrix()
277 mat = coordMat.toRowMatrix()
279 #goal: build a matrix of subreddit columns and tf-idfs rows
280 sim_dist = mat.columnSimilarities(threshold=similarity_threshold)
282 return (sim_dist, tfidf)
285 def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
287 term_id = term + '_id'
289 # aggregate counts by week. now subreddit-term is distinct
290 df = df.filter(df.subreddit.isin(include_subs))
291 df = df.groupBy(['subreddit',term,'week']).agg(f.sum('tf').alias('tf'))
293 max_subreddit_terms = df.groupby(['subreddit','week']).max('tf') # subreddits are unique
294 max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
295 df = df.join(max_subreddit_terms, on=['subreddit','week'])
296 df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
298 # group by term. term is unique
299 idf = df.groupby([term,'week']).count()
301 N_docs = df.select(['subreddit','week']).distinct().groupby(['week']).agg(f.count("subreddit").alias("subreddits_in_week"))
303 idf = idf.join(N_docs, on=['week'])
305 # add a little smoothing to the idf
306 idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1)
308 # collect the dictionary to make a pydict of terms to indexes
309 terms = idf.select([term,'week']).distinct() # terms are distinct
311 terms = terms.withColumn(term_id,f.row_number().over(Window.partitionBy('week').orderBy(term))) # term ids are distinct
314 subreddits = df.select(['subreddit','week']).distinct()
315 subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.partitionBy("week").orderBy("subreddit")))
317 df = df.join(subreddits,on=['subreddit','week'])
319 # map terms to indexes in the tfs and the idfs
320 df = df.join(terms,on=[term,'week']) # subreddit-term-id is unique
322 idf = idf.join(terms,on=[term,'week'])
324 # join on subreddit/term to create tf/dfs indexed by term
325 df = df.join(idf, on=[term_id, term,'week'])
327 # agg terms by subreddit to make sparse tf/df vectors
329 if tf_family == tf_weight.MaxTF:
330 df = df.withColumn("tf_idf", df.relative_tf * df.idf)
331 else: # tf_fam = tf_weight.Norm05
332 df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)
336 def _calc_tfidf(df, term_colname, tf_family):
338 term_id = term + '_id'
340 max_subreddit_terms = df.groupby(['subreddit']).max('tf') # subreddits are unique
341 max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
343 df = df.join(max_subreddit_terms, on='subreddit')
345 df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
347 # group by term. term is unique
348 idf = df.groupby([term]).count()
349 N_docs = df.select('subreddit').distinct().count()
350 # add a little smoothing to the idf
351 idf = idf.withColumn('idf',f.log(N_docs/(1+f.col('count')))+1)
353 # collect the dictionary to make a pydict of terms to indexes
354 terms = idf.select(term).distinct() # terms are distinct
355 terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct
358 subreddits = df.select(['subreddit']).distinct()
359 subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit")))
361 df = df.join(subreddits,on='subreddit')
363 # map terms to indexes in the tfs and the idfs
364 df = df.join(terms,on=term) # subreddit-term-id is unique
366 idf = idf.join(terms,on=term)
368 # join on subreddit/term to create tf/dfs indexed by term
369 df = df.join(idf, on=[term_id, term])
371 # agg terms by subreddit to make sparse tf/df vectors
372 if tf_family == tf_weight.MaxTF:
373 df = df.withColumn("tf_idf", df.relative_tf * df.idf)
374 else: # tf_fam = tf_weight.Norm05
375 df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)
380 def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
382 term_id = term + '_id'
383 # aggregate counts by week. now subreddit-term is distinct
384 df = df.filter(df.subreddit.isin(include_subs))
385 df = df.groupBy(['subreddit',term]).agg(f.sum('tf').alias('tf'))
387 df = _calc_tfidf(df, term_colname, tf_family)
391 def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonsfw.csv"):
392 rankdf = pd.read_csv(path)
393 included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
394 return included_subreddits