1 from pyspark.sql import functions as f
2 from pyspark.sql import SparkSession
3 from pyspark.sql import Window
4 from pyspark.mllib.linalg.distributed import RowMatrix, CoordinateMatrix
9 from itertools import islice
10 from pathlib import Path
11 from similarities_helper import build_cosine_similarities
13 spark = SparkSession.builder.getOrCreate()
14 conf = spark.sparkContext.getConf()
16 # outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
17 def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True):
19 Compute similarities between subreddits based on tfi-idf vectors of comment texts
21 included_subreddits : string
22 Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
24 similarity_threshold : double (default = 0)
25 set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm
26 https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm.
28 min_df : int (default = 0.1 * (number of included_subreddits)
29 exclude terms that appear in fewer than this number of documents.
32 where to output csv and feather outputs
36 print(exclude_phrases)
38 tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet')
40 if included_subreddits is None:
41 included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
42 included_subreddits = {s.strip('\n') for s in included_subreddits}
45 included_subreddits = set(open(included_subreddits))
47 if exclude_phrases == True:
48 tfidf = tfidf.filter(~f.col(term).contains("_"))
50 sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, include_subreddits, similarity_threshold)
54 output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
55 output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
56 output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
58 sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
62 #instead of toLocalMatrix() why not read as entries and put strait into numpy
63 sim_entries = pd.read_parquet(output_parquet)
65 df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
66 df['subreddit_id_new'] = df['subreddit_id_new'] - 1
67 df = df.sort_values('subreddit_id_new').reset_index(drop=True)
68 df = df.set_index('subreddit_id_new')
70 similarities = sim_entries.join(df, on='i')
71 similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
72 similarities = similarities.join(df, on='j')
73 similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
75 similarities.write_feather(output_feather)
76 similarities.write_csv(output_csv)
79 if __name__ == '__main__':
80 fire.Fire(term_cosine_similarities)