1 from pyspark.sql import Window
2 from pyspark.sql import functions as f
4 from pyspark.mllib.linalg.distributed import CoordinateMatrix
11 def cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold):
13 term_id = term + '_id'
14 term_id_new = term + '_id_new'
17 min_df = 0.1 * len(included_subreddits)
19 tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
22 # reset the subreddit ids
23 sub_ids = tfidf.select('subreddit_id').distinct()
24 sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
25 tfidf = tfidf.join(sub_ids,'subreddit_id')
27 # only use terms in at least min_df included subreddits
28 new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
29 # new_count = new_count.filter(f.col('new_count') >= min_df)
30 tfidf = tfidf.join(new_count,term_id,how='inner')
33 term_ids = tfidf.select([term_id]).distinct()
34 term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
35 tfidf = tfidf.join(term_ids,term_id)
37 tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
38 # tfidf = tfidf.withColumnRenamed("idf","idf_old")
39 # tfidf = tfidf.withColumn("idf",f.log(25000/f.col("count")))
40 tfidf = tfidf.withColumn("tf_idf", tfidf.relative_tf * tfidf.idf)
42 # step 1 make an rdd of entires
43 # sorted by (dense) spark subreddit id
44 # entries = tfidf.filter((f.col('subreddit') == 'asoiaf') | (f.col('subreddit') == 'gameofthrones') | (f.col('subreddit') == 'christianity')).select(f.col("term_id_new")-1,f.col("subreddit_id_new")-1,"tf_idf").rdd
46 n_partitions = int(len(included_subreddits)*2 / 5)
48 entries = tfidf.select(f.col(term_id_new)-1,f.col("subreddit_id_new")-1,"tf_idf").rdd.repartition(n_partitions)
50 # put like 10 subredis in each partition
52 # step 2 make it into a distributed.RowMatrix
53 coordMat = CoordinateMatrix(entries)
55 coordMat = CoordinateMatrix(coordMat.entries.repartition(n_partitions))
57 # this needs to be an IndexedRowMatrix()
58 mat = coordMat.toRowMatrix()
60 #goal: build a matrix of subreddit columns and tf-idfs rows
61 sim_dist = mat.columnSimilarities(threshold=similarity_threshold)
63 return (sim_dist, tfidf)
66 def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
69 term_id = term + '_id'
70 # aggregate counts by week. now subreddit-term is distinct
71 df = df.filter(df.subreddit.isin(include_subs))
72 df = df.groupBy(['subreddit',term]).agg(f.sum('tf').alias('tf'))
74 max_subreddit_terms = df.groupby(['subreddit']).max('tf') # subreddits are unique
75 max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
77 df = df.join(max_subreddit_terms, on='subreddit')
79 df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
81 # group by term. term is unique
82 idf = df.groupby([term]).count()
84 N_docs = df.select('subreddit').distinct().count()
86 # add a little smoothing to the idf
87 idf = idf.withColumn('idf',f.log(N_docs/(1+f.col('count')))+1)
89 # collect the dictionary to make a pydict of terms to indexes
90 terms = idf.select(term).distinct() # terms are distinct
91 terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct
94 subreddits = df.select(['subreddit']).distinct()
95 subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit")))
97 df = df.join(subreddits,on='subreddit')
99 # map terms to indexes in the tfs and the idfs
100 df = df.join(terms,on=term) # subreddit-term-id is unique
102 idf = idf.join(terms,on=term)
104 # join on subreddit/term to create tf/dfs indexed by term
105 df = df.join(idf, on=[term_id, term])
107 # agg terms by subreddit to make sparse tf/df vectors
109 if tf_family == tf_weight.MaxTF:
110 df = df.withColumn("tf_idf", df.relative_tf * df.idf)
111 else: # tf_fam = tf_weight.Norm05
112 df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)