1 from pyspark.sql import Window
2 from pyspark.sql import functions as f
4 from pyspark.mllib.linalg.distributed import CoordinateMatrix
5 from tempfile import TemporaryDirectory
7 import pyarrow.dataset as ds
8 from scipy.sparse import csr_matrix
12 class tf_weight(Enum):
16 def read_tfidf_matrix(path,term_colname):
18 term_id = term + '_id'
19 term_id_new = term + '_id_new'
21 dataset = ds.dataset(path,format='parquet')
22 entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new]).to_pandas()
23 return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1))))
25 def column_similarities(mat):
26 norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32))
27 mat = mat.multiply(1/norm)
32 def prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits):
34 term_id = term + '_id'
35 term_id_new = term + '_id_new'
38 min_df = 0.1 * len(included_subreddits)
40 tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
42 # reset the subreddit ids
43 sub_ids = tfidf.select('subreddit_id').distinct()
44 sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
45 tfidf = tfidf.join(sub_ids,'subreddit_id')
47 # only use terms in at least min_df included subreddits
48 new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
49 # new_count = new_count.filter(f.col('new_count') >= min_df)
50 tfidf = tfidf.join(new_count,term_id,how='inner')
53 term_ids = tfidf.select([term_id]).distinct()
54 term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
55 tfidf = tfidf.join(term_ids,term_id)
57 tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
58 # tfidf = tfidf.withColumnRenamed("idf","idf_old")
59 # tfidf = tfidf.withColumn("idf",f.log(25000/f.col("count")))
60 tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
62 tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
64 tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
67 def cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold):
69 term_id = term + '_id'
70 term_id_new = term + '_id_new'
73 min_df = 0.1 * len(included_subreddits)
75 tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
78 # reset the subreddit ids
79 sub_ids = tfidf.select('subreddit_id').distinct()
80 sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
81 tfidf = tfidf.join(sub_ids,'subreddit_id')
83 # only use terms in at least min_df included subreddits
84 new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
85 # new_count = new_count.filter(f.col('new_count') >= min_df)
86 tfidf = tfidf.join(new_count,term_id,how='inner')
89 term_ids = tfidf.select([term_id]).distinct()
90 term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
91 tfidf = tfidf.join(term_ids,term_id)
93 tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
94 # tfidf = tfidf.withColumnRenamed("idf","idf_old")
95 # tfidf = tfidf.withColumn("idf",f.log(25000/f.col("count")))
96 tfidf = tfidf.withColumn("tf_idf", tfidf.relative_tf * tfidf.idf)
98 # step 1 make an rdd of entires
99 # sorted by (dense) spark subreddit id
100 # entries = tfidf.filter((f.col('subreddit') == 'asoiaf') | (f.col('subreddit') == 'gameofthrones') | (f.col('subreddit') == 'christianity')).select(f.col("term_id_new")-1,f.col("subreddit_id_new")-1,"tf_idf").rdd
102 n_partitions = int(len(included_subreddits)*2 / 5)
104 entries = tfidf.select(f.col(term_id_new)-1,f.col("subreddit_id_new")-1,"tf_idf").rdd.repartition(n_partitions)
106 # put like 10 subredis in each partition
108 # step 2 make it into a distributed.RowMatrix
109 coordMat = CoordinateMatrix(entries)
111 coordMat = CoordinateMatrix(coordMat.entries.repartition(n_partitions))
113 # this needs to be an IndexedRowMatrix()
114 mat = coordMat.toRowMatrix()
116 #goal: build a matrix of subreddit columns and tf-idfs rows
117 sim_dist = mat.columnSimilarities(threshold=similarity_threshold)
119 return (sim_dist, tfidf)
122 def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
124 term_id = term + '_id'
126 # aggregate counts by week. now subreddit-term is distinct
127 df = df.filter(df.subreddit.isin(include_subs))
128 df = df.groupBy(['subreddit',term,'week']).agg(f.sum('tf').alias('tf'))
130 max_subreddit_terms = df.groupby(['subreddit','week']).max('tf') # subreddits are unique
131 max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
132 df = df.join(max_subreddit_terms, on=['subreddit','week'])
133 df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
135 # group by term. term is unique
136 idf = df.groupby([term,'week']).count()
138 N_docs = df.select(['subreddit','week']).distinct().groupby(['week']).agg(f.count("subreddit").alias("subreddits_in_week"))
140 idf = idf.join(N_docs, on=['week'])
142 # add a little smoothing to the idf
143 idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1)
145 # collect the dictionary to make a pydict of terms to indexes
146 terms = idf.select([term,'week']).distinct() # terms are distinct
148 terms = terms.withColumn(term_id,f.row_number().over(Window.partitionBy('week').orderBy(term))) # term ids are distinct
151 subreddits = df.select(['subreddit','week']).distinct()
152 subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.partitionBy("week").orderBy("subreddit")))
154 df = df.join(subreddits,on=['subreddit','week'])
156 # map terms to indexes in the tfs and the idfs
157 df = df.join(terms,on=[term,'week']) # subreddit-term-id is unique
159 idf = idf.join(terms,on=[term,'week'])
161 # join on subreddit/term to create tf/dfs indexed by term
162 df = df.join(idf, on=[term_id, term,'week'])
164 # agg terms by subreddit to make sparse tf/df vectors
166 if tf_family == tf_weight.MaxTF:
167 df = df.withColumn("tf_idf", df.relative_tf * df.idf)
168 else: # tf_fam = tf_weight.Norm05
169 df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)
175 def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
178 term_id = term + '_id'
179 # aggregate counts by week. now subreddit-term is distinct
180 df = df.filter(df.subreddit.isin(include_subs))
181 df = df.groupBy(['subreddit',term]).agg(f.sum('tf').alias('tf'))
183 max_subreddit_terms = df.groupby(['subreddit']).max('tf') # subreddits are unique
184 max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
186 df = df.join(max_subreddit_terms, on='subreddit')
188 df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
190 # group by term. term is unique
191 idf = df.groupby([term]).count()
193 N_docs = df.select('subreddit').distinct().count()
195 # add a little smoothing to the idf
196 idf = idf.withColumn('idf',f.log(N_docs/(1+f.col('count')))+1)
198 # collect the dictionary to make a pydict of terms to indexes
199 terms = idf.select(term).distinct() # terms are distinct
200 terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct
203 subreddits = df.select(['subreddit']).distinct()
204 subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit")))
206 df = df.join(subreddits,on='subreddit')
208 # map terms to indexes in the tfs and the idfs
209 df = df.join(terms,on=term) # subreddit-term-id is unique
211 idf = idf.join(terms,on=term)
213 # join on subreddit/term to create tf/dfs indexed by term
214 df = df.join(idf, on=[term_id, term])
216 # agg terms by subreddit to make sparse tf/df vectors
218 if tf_family == tf_weight.MaxTF:
219 df = df.withColumn("tf_idf", df.relative_tf * df.idf)
220 else: # tf_fam = tf_weight.Norm05
221 df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)