--- /dev/null
+from pyspark.sql import functions as f
+from pyspark.sql import SparkSession
+from pyspark.sql import Window
+import numpy as np
+import pyarrow
+import pandas as pd
+import fire
+from itertools import islice
+from pathlib import Path
+from similarities_helper import *
+
+#tfidf = spark.read.parquet('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/subreddit_terms.parquet')
+def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, included_subreddits = None, topN = 500):
+ spark = SparkSession.builder.getOrCreate()
+ conf = spark.sparkContext.getConf()
+ print(outfile)
+ tfidf = spark.read.parquet(tfidf_path)
+
+ if included_subreddits is None:
+ included_subreddits = select_topN_subreddits(topN)
+
+ else:
+ included_subreddits = set(open(included_subreddits))
+
+ print("creating temporary parquet with matrix indicies")
+ tempdir = prep_tfidf_entries_weekly(tfidf, term_colname, min_df, included_subreddits)
+
+ tfidf = spark.read.parquet(tempdir.name)
+
+ # the ids can change each week.
+ subreddit_names = tfidf.select(['subreddit','subreddit_id_new','week']).distinct().toPandas()
+ subreddit_names = subreddit_names.sort_values("subreddit_id_new")
+ subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
+ spark.stop()
+
+ weeks = list(subreddit_names.week.drop_duplicates())
+ for week in weeks:
+ print("loading matrix")
+ mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week)
+ print('computing similarities')
+ sims = column_similarities(mat)
+ del mat
+
+ names = subreddit_names.loc[subreddit_names.week==week]
+
+ sims = sims.rename({i:sr for i, sr in enumerate(names.subreddit.values)},axis=1)
+ sims['subreddit'] = names.subreddit.values
+ write_weekly_similarities(outfile, sims, week)
+
+
+
+def cosine_similarities(outfile, min_df = None, included_subreddits=None, topN=500):
+ '''
+ Compute similarities between subreddits based on tfi-idf vectors of author comments
+
+ included_subreddits : string
+ Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
+
+ min_df : int (default = 0.1 * (number of included_subreddits)
+ exclude terms that appear in fewer than this number of documents.
+
+ outfile: string
+ where to output csv and feather outputs
+'''
+
+ spark = SparkSession.builder.getOrCreate()
+ conf = spark.sparkContext.getConf()
+ print(outfile)
+
+ tfidf = spark.read.parquet('/gscratch/comdata/output/reddit_similarity/tfidf/subreddit_comment_authors.parquet')
+
+ if included_subreddits is None:
+ included_subreddits = select_topN_subreddits(topN)
+
+ else:
+ included_subreddits = set(open(included_subreddits))
+
+ print("creating temporary parquet with matrix indicies")
+ tempdir = prep_tfidf_entries(tfidf, 'author', min_df, included_subreddits)
+ tfidf = spark.read.parquet(tempdir.name)
+ subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
+ subreddit_names = subreddit_names.sort_values("subreddit_id_new")
+ subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
+ spark.stop()
+
+ print("loading matrix")
+ mat = read_tfidf_matrix(tempdir.name,'author')
+ print('computing similarities')
+ sims = column_similarities(mat)
+ del mat
+
+ sims = pd.DataFrame(sims.todense())
+ sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)},axis=1)
+ sims['subreddit'] = subreddit_names.subreddit.values
+
+ p = Path(outfile)
+
+ output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
+ output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
+ output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
+
+ sims.to_feather(outfile)
+ tempdir.cleanup()
+
+if __name__ == '__main__':
+ fire.Fire(author_cosine_similarities)