]> code.communitydata.science - cdsc_reddit.git/commitdiff
grid sweep selection for clustering hyperparameters
authorNate E TeBlunthuis <nathante@n3003.hyak.local>
Tue, 20 Apr 2021 18:33:54 +0000 (11:33 -0700)
committerNate E TeBlunthuis <nathante@n3003.hyak.local>
Tue, 20 Apr 2021 18:33:54 +0000 (11:33 -0700)
clustering/Makefile
clustering/clustering.py
clustering/selection.py [new file with mode: 0644]

index 20d7808024c7dea1c647725f68e83d27aa52b75e..adaa8fe8f53b847c3ddcd94785993dc06cd1faa1 100644 (file)
@@ -1,32 +1,52 @@
 #srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28'
 #srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28'
-all:/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather /gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather
-#all:/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather /gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather /gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather /gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather
+srun_singularity=source /gscratch/comdata/users/nathante/cdsc_reddit/bin/activate && srun_singularity.sh
+similarity_data=/gscratch/comdata/output/reddit_similarity
+clustering_data=/gscratch/comdata/output/reddit_clustering
+selection_grid="--max_iter=10000 --convergence_iter=15,30,100 --preference_quantile=0.85 --damping=0.5,0.6,0.7,0.8,0.85,0.9,0.95,0.97,0.99, --preference_quantile=0.1,0.3,0.5,0.7,0.9"
+all:$(clustering_data)/subreddit_comment_authors_30k.feather $(clustering_data)/subreddit_authors-tf_similarities_30k.feather $(clustering_data)/subreddit_comment_authors_10k.feather $(clustering_data)/subreddit_authors-tf_similarities_10k.feather $(clustering_data)/subreddit_comment_terms_30k.feather $(clustering_data)/subreddit_comment_terms_10k.feather
 
 
-/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
-#      $srun_cdsc python3
-       start_spark_and_run.sh 1 clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85
+$(clustering_data)/subreddit_comment_authors_10k.feather:selection.py $(similarity_data)/subreddit_comment_authors_10k.feather clustering.py
+       $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors_10k.feather $(clustering_data)/subreddit_comment_authors_10k $(selection_grid) -J 20
 
 
-/gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather
-#      $srun_cdsc python3
-       start_spark_and_run.sh 1 clustering.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather ---max_iter=1000 --convergence_iter=15 --preference_quantile=0.9 --damping=0.5
+$(clustering_data)/subreddit_comment_terms_10k.feather:selection.py $(similarity_data)/subreddit_comment_terms_10k.feather clustering.py
+       $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_terms_10k.feather $(clustering_data)/subreddit_comment_terms_10k $(selection_grid) -J 20
+
+$(clustering_data)/subreddit_authors-tf_similarities_10k.feather:clustering.py $(similarity_data)/subreddit_comment_authors-tf_10k.feather
+       $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors-tf_10k.feather $(clustering_data)/subreddit_comment_authors-tf_10k $(selection_grid) -J 20
+
+$(clustering_data)/subreddit_comment_authors_30k.feather:selection.py $(similarity_data)/subreddit_comment_authors_30k.feather clustering.py
+       $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors_30k.feather $(clustering_data)/subreddit_comment_authors_30k $(selection_grid) -J 10
+
+$(clustering_data)/subreddit_comment_terms_30k.feather:selection.py $(similarity_data)/subreddit_comment_terms_30k.feather clustering.py
+       $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_terms_30k.feather $(clustering_data)/subreddit_comment_terms_30k $(selection_grid) -J 10
+
+$(clustering_data)/subreddit_authors-tf_similarities_30k.feather:clustering.py $(similarity_data)/subreddit_comment_authors-tf_30k.feather
+       $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors-tf_30k.feather $(clustering_data)/subreddit_comment_authors-tf_30k $(selection_grid) -J 8
+
+
+# $(clustering_data)/subreddit_comment_authors_100k.feather:clustering.py $(similarity_data)/subreddit_comment_authors_100k.feather
+#       $(srun_singularity) python3 clustering.py $(similarity_data)/subreddit_comment_authors_100k.feather $(clustering_data)/subreddit_comment_authors_100k.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85
+
+# $(clustering_data)/comment_terms_100k.feather:clustering.py $(similarity_data)/subreddit_comment_terms_100k.feather
+#      $(srun_singularity) python3 clustering.py $(similarity_data)/comment_terms_10000.feather $(clustering_data)/comment_terms_10000.feather ---max_iter=1000 --convergence_iter=15 --preference_quantile=0.9 --damping=0.5
+
+# $(clustering_data)/subreddit_comment_author-tf_100k.feather:clustering.py $(similarity_data)/subreddit_comment_author-tf_100k.feather
+#      $(srun_singularity) python3 clustering.py $(similarity_data)/subreddit_comment_author-tf_100k.parquet $(clustering_data)/subreddit_comment_author-tf_100k.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.5 --damping=0.85
 
 
-/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
-#      $srun_cdsc
-       start_spark_and_run.sh 1 clustering.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet /gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.5 --damping=0.85
 
 # it's pretty difficult to get a result that isn't one huge megacluster. A sign that it's bullcrap
 # /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
 #      ./clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.9 --damping=0.85
 
 
 # it's pretty difficult to get a result that isn't one huge megacluster. A sign that it's bullcrap
 # /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
 #      ./clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.9 --damping=0.85
 
-/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
+/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
 
 
-       start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet --output=/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather
+#      start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet --output=/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather
 
 
 # /gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
 
 #      python3 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather --output=/gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather
 
 
 
 # /gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
 
 #      python3 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather --output=/gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather
 
-/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
-#      $srun_cdsc python3
-       start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --output=/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather
+/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
+# #    $srun_cdsc python3
+#      start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --output=/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather
index 4cde71787eb5f208a0e51afb68ef57f1f99c1106..cac57309e5444c36fc20905acb3fe7ee585b832a 100755 (executable)
@@ -1,29 +1,36 @@
 #!/usr/bin/env python3
 #!/usr/bin/env python3
-
+# TODO: replace prints with logging.
+import sys
 import pandas as pd
 import numpy as np
 from sklearn.cluster import AffinityPropagation
 import fire
 import pandas as pd
 import numpy as np
 from sklearn.cluster import AffinityPropagation
 import fire
+from pathlib import Path
+
+def read_similarity_mat(similarities, use_threads=True):
+    df = pd.read_feather(similarities, use_threads=use_threads)
+    mat = np.array(df.drop('_subreddit',1))
+    n = mat.shape[0]
+    mat[range(n),range(n)] = 1
+    return (df._subreddit,mat)
+
+def affinity_clustering(similarities, *args, **kwargs):
+    subreddits, mat = read_similarity_mat(similarities)
+    return _affinity_clustering(mat, subreddits, *args, **kwargs)
 
 
-def affinity_clustering(similarities, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
+def _affinity_clustering(mat, subreddits, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
     '''
     similarities: feather file with a dataframe of similarity scores
     preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
     damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author. 
     '''
     '''
     similarities: feather file with a dataframe of similarity scores
     preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
     damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author. 
     '''
-
-    df = pd.read_feather(similarities)
-    n = df.shape[0]
-    mat = np.array(df.drop('_subreddit',1))
-    mat[range(n),range(n)] = 1
-    assert(all(np.diag(mat)==1))
+    print(f"damping:{damping}; convergenceIter:{convergence_iter}; preferenceQuantile:{preference_quantilne}")
 
     preference = np.quantile(mat,preference_quantile)
 
     print(f"preference is {preference}")
 
     preference = np.quantile(mat,preference_quantile)
 
     print(f"preference is {preference}")
-
     print("data loaded")
     print("data loaded")
-
+    sys.stdout.flush()
     clustering = AffinityPropagation(damping=damping,
                                      max_iter=max_iter,
                                      convergence_iter=convergence_iter,
     clustering = AffinityPropagation(damping=damping,
                                      max_iter=max_iter,
                                      convergence_iter=convergence_iter,
@@ -39,7 +46,7 @@ def affinity_clustering(similarities, output, damping=0.9, max_iter=100000, conv
 
     print(f"found {len(set(clusters))} clusters")
 
 
     print(f"found {len(set(clusters))} clusters")
 
-    cluster_data = pd.DataFrame({'subreddit': df.subreddit,'cluster':clustering.labels_})
+    cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
 
     cluster_sizes = cluster_data.groupby("cluster").count()
     print(f"the largest cluster has {cluster_sizes.subreddit.max()} members")
 
     cluster_sizes = cluster_data.groupby("cluster").count()
     print(f"the largest cluster has {cluster_sizes.subreddit.max()} members")
@@ -48,7 +55,10 @@ def affinity_clustering(similarities, output, damping=0.9, max_iter=100000, conv
 
     print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member")
 
 
     print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member")
 
+    sys.stdout.flush()
     cluster_data.to_feather(output)
     cluster_data.to_feather(output)
+    print(f"saved {output}")
+    return clustering
 
 if __name__ == "__main__":
     fire.Fire(affinity_clustering)
 
 if __name__ == "__main__":
     fire.Fire(affinity_clustering)
diff --git a/clustering/selection.py b/clustering/selection.py
new file mode 100644 (file)
index 0000000..bfa1c31
--- /dev/null
@@ -0,0 +1,87 @@
+from sklearn.metrics import silhouette_score
+from sklearn.cluster import AffinityPropagation
+from functools import partial
+from clustering import _affinity_clustering, read_similarity_mat
+from dataclasses import dataclass
+from multiprocessing  import Pool, cpu_count, Array, Process
+from pathlib import Path
+from itertools import product, starmap
+import pandas as pd
+import fire
+import sys
+
+# silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying. 
+
+@dataclass
+class clustering_result:
+    outpath:Path
+    damping:float
+    max_iter:int
+    convergence_iter:int
+    preference_quantile:float
+    silhouette_score:float
+    alt_silhouette_score:float
+    name:str
+
+def do_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits,  max_iter,  outdir:Path, random_state, verbose, alt_mat):
+    if name is None:
+        name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{convergence_iter}"
+    print(name)
+    sys.stdout.flush()
+    outpath = outdir / (str(name) + ".feather")
+    print(outpath)
+    clustering = _affinity_clustering(mat, subreddits, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose)
+    score = silhouette_score(clustering.affinity_matrix_, clustering.labels_, metric='precomputed')
+    alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed')
+    
+    res = clustering_result(outpath=outpath,
+                            damping=damping,
+                            max_iter=max_iter,
+                            convergence_iter=convergence_iter,
+                            preference_quantile=preference_quantile,
+                            silhouette_score=score,
+                            alt_silhouette_score=score,
+                            name=str(name))
+
+    return res
+
+# alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering).
+
+def select_affinity_clustering(similarities, outdir, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None):
+
+    damping = list(map(float,damping))
+    convergence_iter = convergence_iter = list(map(int,convergence_iter))
+    preference_quantile = list(map(float,preference_quantile))
+
+    if type(outdir) is str:
+        outdir = Path(outdir)
+
+    outdir.mkdir(parents=True,exist_ok=True)
+
+    subreddits, mat = read_similarity_mat(similarities,use_threads=True)
+
+    if alt_similarities is not None:
+        alt_mat = read_similarity_mat(alt_similarities,use_threads=True)
+    else:
+        alt_mat = None
+
+    if J is None:
+        J = cpu_count()
+    pool = Pool(J)
+
+    # get list of tuples: the combinations of hyperparameters
+    hyper_grid = product(damping, convergence_iter, preference_quantile)
+    hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid))
+
+    _do_clustering = partial(do_clustering,  mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat)
+
+    #    similarities = Array('d', mat)
+    # call pool.starmap
+    print("running clustering selection")
+    clustering_data = pool.starmap(_do_clustering, hyper_grid)
+    clustering_data = pd.DataFrame(list(clustering_data))
+    return clustering_data
+
+
+if __name__ == "__main__":
+    fire.Fire(select_affinity_clustering)

Community Data Science Collective || Want to submit a patch?