+ viewport = viewport.properties(width=600,height=400)
+
+ viewport1 = viewport.add_selection(selector1)
+
+ viewport2 = viewport.encode(
+ alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1)),
+ alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1))
+ )
+
+ viewport2 = viewport2.add_selection(selectorx2)
+ viewport2 = viewport2.add_selection(selectory2)
+
+ sr = base.encode(alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectorx2)),
+ alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectory2))
+ )
+
+ sr = sr.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
+ sr = sr.properties(width=1275,height=600)
+
+
+ chart = (viewport1 | viewport2) & sr
+
+
+ return chart
+
+def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4):
+ tsne_data = tsne_data.merge(clusters,on='subreddit')
+
+ centroids = tsne_data.groupby('cluster').agg({'x':np.mean,'y':np.mean})
+
+ color_ids = np.arange(n_colors)
+
+ distances = np.empty(shape=(centroids.shape[0],centroids.shape[0]))
+
+ groups = tsne_data.groupby('cluster')
+ for centroid in centroids.itertuples():
+ c_dists = groups.apply(lambda r: min(np.sqrt(np.square(centroid.x - r.x) + np.square(centroid.y-r.y))))
+ distances[:,centroid.Index] = c_dists
+
+ # nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(centroids)
+ # distances, indices = nbrs.kneighbors()
+
+ nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances)
+ distances, indices = nbrs.kneighbors()
+
+ color_assignments = np.repeat(-1,len(centroids))
+
+ for i in range(len(centroids)):
+ knn = indices[i]
+ knn_colors = color_assignments[knn]
+ available_colors = color_ids[list(set(color_ids) - set(knn_colors))]
+
+ if(len(available_colors) > 0):
+ color_assignments[i] = available_colors[0]
+ else:
+ raise Exception("Can't color this many neighbors with this many colors")
+
+
+ centroids = centroids.reset_index()
+ colors = centroids.loc[:,['cluster']]
+ colors['color'] = color_assignments
+
+ tsne_data = tsne_data.merge(colors,on='cluster')
+ return(tsne_data)
+
+term_data = pd.read_feather("tsne_subreddit_fit.feather")
+clusters = pd.read_feather("term_3000_clusters.feather")
+
+tsne_data = assign_cluster_colors(term_data,clusters,10,8)
+
+term_zoom_plot = zoom_plot(tsne_data)
+
+term_zoom_plot.save("subreddit_terms_tsne_3000.html")
+
+term_viewport_plot = viewport_plot(tsne_data)
+
+term_viewport_plot.save("subreddit_terms_tsne_3000_viewport.html")
+
+commenter_data = pd.read_feather("tsne_author_fit.feather")
+clusters = pd.read_feather('author_3000_clusters.feather')
+commenter_data = assign_cluster_colors(commenter_data,clusters,10,8)
+commenter_zoom_plot = zoom_plot(commenter_data)
+commenter_viewport_plot = viewport_plot(commenter_data)
+commenter_zoom_plot.save("subreddit_commenters_tsne_3000.html")
+commenter_viewport_plot.save("subreddit_commenters_tsne_3000_viewport.html")
+
+# chart = chart.properties(width=10000,height=10000)
+# chart.save("test_tsne_whole.svg")