similarity_data=/gscratch/comdata/output/reddit_similarity
clustering_data=/gscratch/comdata/output/reddit_clustering
kmeans_selection_grid=--max_iters=[3000] --n_inits=[10] --n_clusters=[100,500,1000,1250,1500,1750,2000]
+
+umap_hdbscan_selection_grid=--min_cluster_sizes=[2] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf] --n_neighbors=[5,15,25,50,75,100] --learning_rate=[1] --min_dist=[0,0.1,0.25,0.5,0.75,0.9,0.99] --local_connectivity=[1]
+
hdbscan_selection_grid=--min_cluster_sizes=[2,3,4,5] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf]
affinity_selection_grid=--dampings=[0.5,0.6,0.7,0.8,0.95,0.97,0.99] --preference_quantiles=[0.1,0.3,0.5,0.7,0.9] --convergence_iters=[15]
${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv:clustering.py ${authors_tf_10k_input_lsi} clustering_base.py hdbscan_clustering.py
$(srun_singularity) python3 hdbscan_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/hdbscan --savefile=${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv $(hdbscan_selection_grid)
+${authors_tf_10k_output_lsi}/umap_hdbscan/selection_data.csv:umap_hdbscan_clustering_lsi.py
+ $(srun_singularity) python3 umap_hdbscan_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/umap_hdbscan --savefile=${authors_tf_10k_output_lsi}/umap_hdbscan/selection_data.csv $(umap_hdbscan_selection_grid)
+
+
${terms_10k_output_lsi}/best_hdbscan.feather:${terms_10k_output_lsi}/hdbscan/selection_data.csv pick_best_clustering.py
$(srun_singularity) python3 pick_best_clustering.py $< $@ --min_clusters=50 --max_isolates=5000 --min_cluster_size=2
${authors_tf_10k_output_lsi}/best_hdbscan.feather:${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv pick_best_clustering.py
$(srun_singularity) python3 pick_best_clustering.py $< $@ --min_clusters=50 --max_isolates=5000 --min_cluster_size=2
+${authors_tf_10k_output_lsi}/best_umap_hdbscan_2.feather:${authors_tf_10k_output_lsi}/umap_hdbscan/selection_data.csv pick_best_clustering.py
+ $(srun_singularity) python3 pick_best_clustering.py $< $@ --min_clusters=50 --max_isolates=5000 --min_cluster_size=2
+
+best_umap_hdbscan.feather:${authors_tf_10k_output_lsi}/best_umap_hdbscan_2.feather
+
+# {'lsi_dimensions': 700, 'outpath': '/gscratch/comdata/output/reddit_clustering/subreddit_comment_authors-tf_10k_LSI/umap_hdbscan', 'silhouette_score': 0.27616957, 'name': 'mcs-2_ms-5_cse-0.05_csm-leaf_nn-15_lr-1.0_md-0.1_lc-1_lsi-700', 'n_clusters': 547, 'n_isolates': 2093, 'silhouette_samples': '/gscratch/comdata/output/reddit_clustering/subreddit_comment_authors-tf_10k_LSI/umap_hdbscan/silhouette_samples-mcs-2_ms-5_cse-0.05_csm-leaf_nn-15_lr-1.0_md-0.1_lc-1_lsi-700.feather', 'min_cluster_size': 2, 'min_samples': 5, 'cluster_selection_epsilon': 0.05, 'cluster_selection_method': 'leaf', 'n_neighbors': 15, 'learning_rate': 1.0, 'min_dist': 0.1, 'local_connectivity': 1, 'n_isolates_str': '2093', 'n_isolates_0': False}
+
+best_umap_grid=--min_cluster_sizes=[2] --min_samples=[5] --cluster_selection_epsilons=[0.05] --cluster_selection_methods=[leaf] --n_neighbors=[15] --learning_rate=[1] --min_dist=[0.1] --local_connectivity=[1] --save_step1=True
+
+umap_hdbscan_coords:
+ python3 umap_hdbscan_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/umap_hdbscan --savefile=/dev/null ${best_umap_grid}
+
clean_affinity:
rm -f ${authors_10k_output}/affinity/selection_data.csv
rm -f ${authors_tf_10k_output}/affinity/selection_data.csv
clean: clean_affinity clean_kmeans clean_hdbscan
-PHONY: clean clean_affinity clean_kmeans clean_hdbscan clean_authors clean_authors_tf clean_terms terms_10k authors_10k authors_tf_10k
+PHONY: clean clean_affinity clean_kmeans clean_hdbscan clean_authors clean_authors_tf clean_terms terms_10k authors_10k authors_tf_10k best_umap_hdbscan.feather umap_hdbscan_coords
# $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS:selection.py $(similarity_data)/subreddit_comment_authors_30k.feather clustering.py
# $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors_30k.feather $(clustering_data)/subreddit_comment_authors_30k $(selection_grid) -J 10 && touch $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS
+import pickle
from pathlib import Path
import numpy as np
import pandas as pd
self.outpath.mkdir(parents=True, exist_ok=True)
self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
self.hasrun = True
+ self.cleanup()
+
+ def cleanup(self):
+ self.cluster_data = None
+ self.mat = None
+ self.clustering=None
+ self.subreddits=None
def get_info(self):
if not self.hasrun:
return score
def read_distance_mat(self, similarities, use_threads=True):
+ print(similarities)
df = pd.read_feather(similarities, use_threads=use_threads)
mat = np.array(df.drop('_subreddit',1))
n = mat.shape[0]
return cluster_data
+class twoway_clustering_job(clustering_job):
+ def __init__(self, infile, outpath, name, call1, call2, args1, args2):
+ self.outpath = Path(outpath)
+ self.call1 = call1
+ self.args1 = args1
+ self.call2 = call2
+ self.args2 = args2
+ self.infile = Path(infile)
+ self.name = name
+ self.hasrun = False
+ self.args = args1|args2
+
+ def run(self):
+ self.subreddits, self.mat = self.read_distance_mat(self.infile)
+ self.step1 = self.call1(self.mat, **self.args1)
+ self.clustering = self.call2(self.mat, self.step1, **self.args2)
+ self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
+ self.hasrun = True
+ self.after_run()
+ self.cleanup()
+
+ def after_run():
+ self.score = self.silhouette()
+ self.outpath.mkdir(parents=True, exist_ok=True)
+ print(self.outpath/(self.name+".feather"))
+ self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
+
+
+ def cleanup(self):
+ super().cleanup()
+ self.step1 = None
+
@dataclass
class clustering_result:
outpath:Path
outcsv = Path(outcsv)
outcsv.parent.mkdir(parents=True, exist_ok=True)
self.infos.to_csv(outcsv)
+
+
+class twoway_grid_sweep(grid_sweep):
+ def __init__(self, jobtype, inpath, outpath, namer, args1, args2, *args, **kwargs):
+ self.jobtype = jobtype
+ self.namer = namer
+ prod1 = product(* args1.values())
+ prod2 = product(* args2.values())
+ grid1 = [dict(zip(args1.keys(), pargs)) for pargs in prod1]
+ grid2 = [dict(zip(args2.keys(), pargs)) for pargs in prod2]
+ grid = product(grid1, grid2)
+ inpath = Path(inpath)
+ outpath = Path(outpath)
+ self.hasrun = False
+ self.grid = [(inpath,outpath,namer(**(g[0] | g[1])), g[0], g[1], *args) for g in grid]
+ self.jobs = [jobtype(*g) for g in self.grid]
from clustering_base import clustering_job, clustering_result
-from grid_sweep import grid_sweep
+from grid_sweep import grid_sweep, twoway_grid_sweep
from dataclasses import dataclass
from itertools import chain
from pathlib import Path
self.hasrun = False
self.subgrids = [self.subsweep(lsi_path, outpath, lsi_dim, *args, **kwargs) for lsi_dim, lsi_path in zip(lsi_nums, lsi_paths)]
self.jobs = list(chain(*map(lambda gs: gs.jobs, self.subgrids)))
+
+class twoway_lsi_grid_sweep(twoway_grid_sweep):
+ def __init__(self, jobtype, subsweep, inpath, lsi_dimensions, outpath, args1, args2, save_step1):
+ self.jobtype = jobtype
+ self.subsweep = subsweep
+ inpath = Path(inpath)
+ if lsi_dimensions == 'all':
+ lsi_paths = list(inpath.glob("*.feather"))
+ else:
+ lsi_paths = [inpath / (str(dim) + '.feather') for dim in lsi_dimensions]
+
+ lsi_nums = [int(p.stem) for p in lsi_paths]
+ self.hasrun = False
+ self.subgrids = [self.subsweep(lsi_path, outpath, lsi_dim, args1, args2, save_step1) for lsi_dim, lsi_path in zip(lsi_nums, lsi_paths)]
+ self.jobs = list(chain(*map(lambda gs: gs.jobs, self.subgrids)))
--- /dev/null
+from clustering_base import clustering_result, clustering_job, twoway_clustering_job
+from hdbscan_clustering import hdbscan_clustering_result
+import umap
+from grid_sweep import twoway_grid_sweep
+from dataclasses import dataclass
+import hdbscan
+from sklearn.neighbors import NearestNeighbors
+import plotnine as pn
+import numpy as np
+from itertools import product, starmap, chain
+import pandas as pd
+from multiprocessing import cpu_count
+import fire
+
+def test_select_hdbscan_clustering():
+ # select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
+ # "test_hdbscan_author30k",
+ # min_cluster_sizes=[2],
+ # min_samples=[1,2],
+ # cluster_selection_epsilons=[0,0.05,0.1,0.15],
+ # cluster_selection_methods=['eom','leaf'],
+ # lsi_dimensions='all')
+ inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI"
+ outpath = "test_umap_hdbscan_lsi"
+ min_cluster_sizes=[2,3,4]
+ min_samples=[1,2,3]
+ cluster_selection_epsilons=[0,0.1,0.3,0.5]
+ cluster_selection_methods=[1]
+ lsi_dimensions='all'
+ n_neighbors = [5,10,15,25,35,70,100]
+ learning_rate = [0.1,0.5,1,2]
+ min_dist = [0.5,1,1.5,2]
+ local_connectivity = [1,2,3,4,5]
+
+ hdbscan_params = {"min_cluster_sizes":min_cluster_sizes, "min_samples":min_samples, "cluster_selection_epsilons":cluster_selection_epsilons, "cluster_selection_methods":cluster_selection_methods}
+ umap_params = {"n_neighbors":n_neighbors, "learning_rate":learning_rate, "min_dist":min_dist, "local_connectivity":local_connectivity}
+ gs = umap_hdbscan_grid_sweep(inpath, "all", outpath, hdbscan_params,umap_params)
+
+ # gs.run(20)
+ # gs.save("test_hdbscan/lsi_sweep.csv")
+
+
+ # job1 = hdbscan_lsi_job(infile=inpath, outpath=outpath, name="test", lsi_dims=500, min_cluster_size=2, min_samples=1,cluster_selection_epsilon=0,cluster_selection_method='eom')
+ # job1.run()
+ # print(job1.get_info())
+
+ # df = pd.read_csv("test_hdbscan/selection_data.csv")
+ # test_select_hdbscan_clustering()
+ # check_clusters = pd.read_feather("test_hdbscan/500_2_2_0.1_eom.feather")
+ # silscores = pd.read_feather("test_hdbscan/silhouette_samples500_2_2_0.1_eom.feather")
+ # c = check_clusters.merge(silscores,on='subreddit')# fire.Fire(select_hdbscan_clustering)
+class umap_hdbscan_grid_sweep(twoway_grid_sweep):
+ def __init__(self,
+ inpath,
+ outpath,
+ umap_params,
+ hdbscan_params):
+
+ super().__init__(umap_hdbscan_job, inpath, outpath, self.namer, umap_params, hdbscan_params)
+
+ def namer(self,
+ min_cluster_size,
+ min_samples,
+ cluster_selection_epsilon,
+ cluster_selection_method,
+ n_neighbors,
+ learning_rate,
+ min_dist,
+ local_connectivity
+ ):
+ return f"mcs-{min_cluster_size}_ms-{min_samples}_cse-{cluster_selection_epsilon}_csm-{cluster_selection_method}_nn-{n_neighbors}_lr-{learning_rate}_md-{min_dist}_lc-{local_connectivity}"
+
+@dataclass
+class umap_hdbscan_clustering_result(hdbscan_clustering_result):
+ n_neighbors:int
+ learning_rate:float
+ min_dist:float
+ local_connectivity:int
+
+class umap_hdbscan_job(twoway_clustering_job):
+ def __init__(self, infile, outpath, name,
+ umap_args = {"n_neighbors":15, "learning_rate":1, "min_dist":1, "local_connectivity":1},
+ hdbscan_args = {"min_cluster_size":2, "min_samples":1, "cluster_selection_epsilon":0, "cluster_selection_method":'eom'},
+ save_step1 = False,
+ *args,
+ **kwargs):
+ super().__init__(infile,
+ outpath,
+ name,
+ call1=umap_hdbscan_job._umap_embedding,
+ call2=umap_hdbscan_job._hdbscan_clustering,
+ args1=umap_args,
+ args2=hdbscan_args,
+ save_step1=save_step1,
+ *args,
+ **kwargs
+ )
+
+ self.n_neighbors = umap_args['n_neighbors']
+ self.learning_rate = umap_args['learning_rate']
+ self.min_dist = umap_args['min_dist']
+ self.local_connectivity = umap_args['local_connectivity']
+ self.min_cluster_size = hdbscan_args['min_cluster_size']
+ self.min_samples = hdbscan_args['min_samples']
+ self.cluster_selection_epsilon = hdbscan_args['cluster_selection_epsilon']
+ self.cluster_selection_method = hdbscan_args['cluster_selection_method']
+
+ def after_run(self):
+ coords = self.step1.emedding_
+ self.cluster_data['x'] = coords[:,0]
+ self.cluster_data['y'] = coords[:,1]
+ super().after_run()
+
+
+ def _umap_embedding(mat, **umap_args):
+ print(f"running umap embedding. umap_args:{umap_args}")
+ umapmodel = umap.UMAP(metric='precomputed', **umap_args)
+ umapmodel = umapmodel.fit(mat)
+ return umapmodel
+
+ def _hdbscan_clustering(mat, umapmodel, **hdbscan_args):
+ print(f"running hdbascan clustering. hdbscan_args:{hdbscan_args}")
+
+ umap_coords = umapmodel.transform(mat)
+
+ clusterer = hdbscan.HDBSCAN(metric='euclidean',
+ core_dist_n_jobs=cpu_count(),
+ **hdbscan_args
+ )
+
+ clustering = clusterer.fit(umap_coords)
+
+ return(clustering)
+
+ def get_info(self):
+ result = super().get_info()
+ self.result = umap_hdbscan_clustering_result(**result.__dict__,
+ min_cluster_size=self.min_cluster_size,
+ min_samples=self.min_samples,
+ cluster_selection_epsilon=self.cluster_selection_epsilon,
+ cluster_selection_method=self.cluster_selection_method,
+ n_neighbors = self.n_neighbors,
+ learning_rate = self.learning_rate,
+ min_dist = self.min_dist,
+ local_connectivity=self.local_connectivity
+ )
+ return self.result
+
+def run_umap_hdbscan_grid_sweep(savefile, inpath, outpath, n_neighbors = [15], learning_rate=[1], min_dist=[1], local_connectivity=[1],
+ min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom']):
+ """Run umap + hdbscan clustering once or more with different parameters.
+
+ Usage:
+ umap_hdbscan_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --n_neighbors=<csv> --learning_rate=<csv> --min_dist=<csv> --local_connectivity=<csv> --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=<csv "eom"|"leaf">
+
+ Keword arguments:
+ savefile: path to save the metadata and diagnostics
+ inpath: path to feather data containing a labeled matrix of subreddit similarities.
+ outpath: path to output fit kmeans clusterings.
+ n_neighbors: umap parameter takes integers greater than 1
+ learning_rate: umap parameter takes positive real values
+ min_dist: umap parameter takes positive real values
+ local_connectivity: umap parameter takes positive integers
+ min_cluster_sizes: one or more integers indicating the minumum cluster size
+ min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
+ cluster_selection_epsilon: one or more similarity thresholds for transition from dbscan to hdbscan
+ cluster_selection_method: "eom" or "leaf" eom gives larger clusters.
+ """
+
+ umap_args = {'n_neighbors':list(map(int, n_neighbors)),
+ 'learning_rate':list(map(float,learning_rate)),
+ 'min_dist':list(map(float,min_dist)),
+ 'local_connectivity':list(map(int,local_connectivity)),
+ }
+
+ hdbscan_args = {'min_cluster_size':list(map(int,min_cluster_sizes)),
+ 'min_samples':list(map(int,min_samples)),
+ 'cluster_selection_epsilon':list(map(float,cluster_selection_epsilons)),
+ 'cluster_selection_method':cluster_selection_methods}
+
+ obj = umap_hdbscan_grid_sweep(inpath,
+ outpath,
+ umap_args,
+ hdbscan_args)
+ obj.run(cores=10)
+ obj.save(savefile)
+
+
+def KNN_distances_plot(mat,outname,k=2):
+ nbrs = NearestNeighbors(n_neighbors=k,algorithm='auto',metric='precomputed').fit(mat)
+ distances, indices = nbrs.kneighbors(mat)
+ d2 = distances[:,-1]
+ df = pd.DataFrame({'dist':d2})
+ df = df.sort_values("dist",ascending=False)
+ df['idx'] = np.arange(0,d2.shape[0]) + 1
+ p = pn.qplot(x='idx',y='dist',data=df,geom='line') + pn.scales.scale_y_continuous(minor_breaks = np.arange(0,50)/50,
+ breaks = np.arange(0,10)/10)
+ p.save(outname,width=16,height=10)
+
+def make_KNN_plots():
+ similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10k.feather"
+ subreddits, mat = read_similarity_mat(similarities)
+ mat = sim_to_dist(mat)
+
+ KNN_distances_plot(mat,k=2,outname='terms_knn_dist2.png')
+
+ similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10k.feather"
+ subreddits, mat = read_similarity_mat(similarities)
+ mat = sim_to_dist(mat)
+ KNN_distances_plot(mat,k=2,outname='authors_knn_dist2.png')
+
+ similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k.feather"
+ subreddits, mat = read_similarity_mat(similarities)
+ mat = sim_to_dist(mat)
+ KNN_distances_plot(mat,k=2,outname='authors-tf_knn_dist2.png')
+
+if __name__ == "__main__":
+ fire.Fire(run_umap_hdbscan_grid_sweep)
+
+# test_select_hdbscan_clustering()
+ #fire.Fire(select_hdbscan_clustering)
--- /dev/null
+from umap_hdbscan_clustering import umap_hdbscan_job, umap_hdbscan_grid_sweep, umap_hdbscan_clustering_result
+from lsi_base import twoway_lsi_grid_sweep, lsi_mixin, lsi_result_mixin
+from grid_sweep import twoway_grid_sweep
+import fire
+from dataclasses import dataclass
+
+@dataclass
+class umap_hdbscan_clustering_result_lsi(umap_hdbscan_clustering_result, lsi_result_mixin):
+ pass
+
+class umap_hdbscan_lsi_job(umap_hdbscan_job, lsi_mixin):
+ def __init__(self, infile, outpath, name, umap_args, hdbscan_args, lsi_dims, save_step1=False):
+ super().__init__(
+ infile,
+ outpath,
+ name,
+ umap_args,
+ hdbscan_args,
+ save_step1
+ )
+ super().set_lsi_dims(lsi_dims)
+
+ def get_info(self):
+ partial_result = super().get_info()
+ self.result = umap_hdbscan_clustering_result_lsi(**partial_result.__dict__,
+ lsi_dimensions=self.lsi_dims)
+ return self.result
+
+class umap_hdbscan_lsi_grid_sweep(twoway_lsi_grid_sweep):
+ def __init__(self,
+ inpath,
+ lsi_dims,
+ outpath,
+ umap_args,
+ hdbscan_args,
+ save_step1
+ ):
+
+ super().__init__(umap_hdbscan_lsi_job,
+ _umap_hdbscan_lsi_grid_sweep,
+ inpath,
+ lsi_dims,
+ outpath,
+ umap_args,
+ hdbscan_args,
+ save_step1
+ )
+
+
+
+class _umap_hdbscan_lsi_grid_sweep(twoway_grid_sweep):
+ def __init__(self,
+ inpath,
+ outpath,
+ lsi_dim,
+ umap_args,
+ hdbscan_args,
+ save_step1):
+
+ self.lsi_dim = lsi_dim
+ self.jobtype = umap_hdbscan_lsi_job
+ super().__init__(self.jobtype, inpath, outpath, self.namer, umap_args, hdbscan_args, save_step1, lsi_dim)
+
+
+ def namer(self, *args, **kwargs):
+ s = umap_hdbscan_grid_sweep.namer(self, *args, **kwargs)
+ s += f"_lsi-{self.lsi_dim}"
+ return s
+
+def run_umap_hdbscan_lsi_grid_sweep(savefile, inpath, outpath, n_neighbors = [15], learning_rate=[1], min_dist=[1], local_connectivity=[1],
+ min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom'], lsi_dimensions='all', save_step1 = False):
+ """Run hdbscan clustering once or more with different parameters.
+
+ Usage:
+ hdbscan_clustering_lsi --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=[eom]> --lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
+
+ Keword arguments:
+ savefile: path to save the metadata and diagnostics
+ inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities.
+ outpath: path to output fit clusterings.
+ min_cluster_sizes: one or more integers indicating the minumum cluster size
+ min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
+ cluster_selection_epsilons: one or more similarity thresholds for transition from dbscan to hdbscan
+ cluster_selection_methods: one or more of "eom" or "leaf" eom gives larger clusters.
+ lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
+ """
+
+
+ umap_args = {'n_neighbors':list(map(int, n_neighbors)),
+ 'learning_rate':list(map(float,learning_rate)),
+ 'min_dist':list(map(float,min_dist)),
+ 'local_connectivity':list(map(int,local_connectivity)),
+ }
+
+ hdbscan_args = {'min_cluster_size':list(map(int,min_cluster_sizes)),
+ 'min_samples':list(map(int,min_samples)),
+ 'cluster_selection_epsilon':list(map(float,cluster_selection_epsilons)),
+ 'cluster_selection_method':cluster_selection_methods}
+
+ obj = umap_hdbscan_lsi_grid_sweep(inpath,
+ lsi_dimensions,
+ outpath,
+ umap_args,
+ hdbscan_args,
+ save_step1
+ )
+
+
+ obj.run(10)
+ obj.save(savefile)
+
+
+if __name__ == "__main__":
+ fire.Fire(run_umap_hdbscan_lsi_grid_sweep)