]> code.communitydata.science - cdsc_reddit.git/commitdiff
Add code for running tf-idf at the weekly level.
authorNate E TeBlunthuis <nathante@n2347.hyak.local>
Wed, 2 Dec 2020 06:54:48 +0000 (22:54 -0800)
committerNate E TeBlunthuis <nathante@n2347.hyak.local>
Wed, 2 Dec 2020 06:54:48 +0000 (22:54 -0800)
author_cosine_similarity.py
similarities_helper.py
tfidf_authors.py

index 08001c2165460bbea2b7f01d32944d67ed36c52f..7ae708b72289bb8cb36eb332cbc11b54e22f6dfa 100644 (file)
@@ -7,7 +7,7 @@ import pandas as pd
 import fire
 from itertools import islice
 from pathlib import Path
 import fire
 from itertools import islice
 from pathlib import Path
-from similarities_helper import cosine_similarities
+from similarities_helper import cosine_similarities, prep_tfidf_entries, read_tfidf_matrix, column_similarities
 
 spark = SparkSession.builder.getOrCreate()
 conf = spark.sparkContext.getConf()
 
 spark = SparkSession.builder.getOrCreate()
 conf = spark.sparkContext.getConf()
@@ -31,49 +31,89 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get
          where to output csv and feather outputs
 '''
 
          where to output csv and feather outputs
 '''
 
+    spark = SparkSession.builder.getOrCreate()
+    conf = spark.sparkContext.getConf()
     print(outfile)
 
     tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_authors.parquet')
 
     if included_subreddits is None:
     print(outfile)
 
     tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_authors.parquet')
 
     if included_subreddits is None:
-        included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
-        included_subreddits = {s.strip('\n') for s in included_subreddits}
+        rankdf = pd.read_csv("/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv")
+        included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
 
     else:
         included_subreddits = set(open(included_subreddits))
 
 
     else:
         included_subreddits = set(open(included_subreddits))
 
-    sim_dist, tfidf = cosine_similarities(tfidf, 'author', min_df, included_subreddits, similarity_threshold)
+    print("creating temporary parquet with matrix indicies")
+    tempdir = prep_tfidf_entries(tfidf, 'author', min_df, included_subreddits)
+    tfidf = spark.read.parquet(tempdir.name)
+    subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
+    subreddit_names = subreddit_names.sort_values("subreddit_id_new")
+    subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
+    spark.stop()
+
+    print("loading matrix")
+    mat = read_tfidf_matrix(tempdir.name,'author')
+    print('computing similarities')
+    sims = column_similarities(mat)
+    del mat
+    
+    sims = pd.DataFrame(sims.todense())
+    sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)},axis=1)
+    sims['subreddit'] = subreddit_names.subreddit.values
 
     p = Path(outfile)
 
     output_feather =  Path(str(p).replace("".join(p.suffixes), ".feather"))
     output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv"))
     output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet"))
 
     p = Path(outfile)
 
     output_feather =  Path(str(p).replace("".join(p.suffixes), ".feather"))
     output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv"))
     output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet"))
-    sim_dist = sim_dist.entries.toDF()
 
 
-    sim_dist = sim_dist.repartition(1)
-    sim_dist.write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
+    sims.to_feather(outfile)
+    tempdir.cleanup()
+
+    # print(outfile)
+
+    # tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_authors.parquet')
+
+    # if included_subreddits is None:
+    #     included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
+    #     included_subreddits = {s.strip('\n') for s in included_subreddits}
+
+    # else:
+    #     included_subreddits = set(open(included_subreddits))
+
+    # sim_dist, tfidf = cosine_similarities(tfidf, 'author', min_df, included_subreddits, similarity_threshold)
+
+    # p = Path(outfile)
+
+    # output_feather =  Path(str(p).replace("".join(p.suffixes), ".feather"))
+    # output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv"))
+    # output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet"))
+    # sim_dist = sim_dist.entries.toDF()
+
+    # sim_dist = sim_dist.repartition(1)
+    # sim_dist.write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
     
 
 
     
 
 
-    #instead of toLocalMatrix() why not read as entries and put strait into numpy
-    sim_entries = pd.read_parquet(output_parquet)
+    # #instead of toLocalMatrix() why not read as entries and put strait into numpy
+    sim_entries = pd.read_parquet(output_parquet)
 
 
-    df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
+    df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
 
 
-    spark.stop()
-    df['subreddit_id_new'] = df['subreddit_id_new'] - 1
-    df = df.sort_values('subreddit_id_new').reset_index(drop=True)
-    df = df.set_index('subreddit_id_new')
-
-    similarities = sim_entries.join(df, on='i')
-    similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
-    similarities = similarities.join(df, on='j')
-    similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
-
-    similarities.to_feather(output_feather)
-    similarities.to_csv(output_csv)
-    return similarities
+    spark.stop()
+    df['subreddit_id_new'] = df['subreddit_id_new'] - 1
+    df = df.sort_values('subreddit_id_new').reset_index(drop=True)
+    df = df.set_index('subreddit_id_new')
+
+    similarities = sim_entries.join(df, on='i')
+    similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
+    similarities = similarities.join(df, on='j')
+    similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
+
+    similarities.to_feather(output_feather)
+    similarities.to_csv(output_csv)
+    return similarities
     
 if __name__ == '__main__':
     fire.Fire(author_cosine_similarities)
     
 if __name__ == '__main__':
     fire.Fire(author_cosine_similarities)
index 5933f8ece33369eca52e9b5542b146c25f582c35..ef434ac4ac52d297533d1282a13e3ad1714f3b2e 100644 (file)
@@ -119,6 +119,59 @@ def cosine_similarities(tfidf, term_colname, min_df, included_subreddits, simila
     return (sim_dist, tfidf)
 
 
     return (sim_dist, tfidf)
 
 
+def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
+    term = term_colname
+    term_id = term + '_id'
+
+    # aggregate counts by week. now subreddit-term is distinct
+    df = df.filter(df.subreddit.isin(include_subs))
+    df = df.groupBy(['subreddit',term,'week']).agg(f.sum('tf').alias('tf'))
+
+    max_subreddit_terms = df.groupby(['subreddit','week']).max('tf') # subreddits are unique
+    max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
+    df = df.join(max_subreddit_terms, on=['subreddit','week'])
+    df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
+
+    # group by term. term is unique
+    idf = df.groupby([term,'week']).count()
+
+    N_docs = df.select(['subreddit','week']).distinct().groupby(['week']).agg(f.count("subreddit").alias("subreddits_in_week"))
+
+    idf = idf.join(N_docs, on=['week'])
+
+    # add a little smoothing to the idf
+    idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1)
+
+    # collect the dictionary to make a pydict of terms to indexes
+    terms = idf.select([term,'week']).distinct() # terms are distinct
+
+    terms = terms.withColumn(term_id,f.row_number().over(Window.partitionBy('week').orderBy(term))) # term ids are distinct
+
+    # make subreddit ids
+    subreddits = df.select(['subreddit','week']).distinct()
+    subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.partitionBy("week").orderBy("subreddit")))
+
+    df = df.join(subreddits,on=['subreddit','week'])
+
+    # map terms to indexes in the tfs and the idfs
+    df = df.join(terms,on=[term,'week']) # subreddit-term-id is unique
+
+    idf = idf.join(terms,on=[term,'week'])
+
+    # join on subreddit/term to create tf/dfs indexed by term
+    df = df.join(idf, on=[term_id, term,'week'])
+
+    # agg terms by subreddit to make sparse tf/df vectors
+    
+    if tf_family == tf_weight.MaxTF:
+        df = df.withColumn("tf_idf",  df.relative_tf * df.idf)
+    else: # tf_fam = tf_weight.Norm05
+        df = df.withColumn("tf_idf",  (0.5 + 0.5 * df.relative_tf) * df.idf)
+
+    return df
+
+
+
 def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
 
     term = term_colname
 def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
 
     term = term_colname
index 432ec39b764cf1a4de1edfba82a35dab01dfd393..6852fe833955eea01e62acf08d509399cfe4837c 100644 (file)
@@ -1,12 +1,14 @@
 from pyspark.sql import SparkSession
 from similarities_helper import build_tfidf_dataset
 from pyspark.sql import SparkSession
 from similarities_helper import build_tfidf_dataset
+import pandas as pd
 
 spark = SparkSession.builder.getOrCreate()
 
 df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp")
 
 
 spark = SparkSession.builder.getOrCreate()
 
 df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp")
 
-include_subs = set(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"))
-include_subs = {s.strip('\n') for s in include_subs}
+include_subs = pd.read_csv("/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv")
+
+#include_subs = set(include_subs.loc[include_subs.comments_rank < 300]['subreddit'])
 
 # remove [deleted] and AutoModerator (TODO remove other bots)
 df = df.filter(df.author != '[deleted]')
 
 # remove [deleted] and AutoModerator (TODO remove other bots)
 df = df.filter(df.author != '[deleted]')

Community Data Science Collective || Want to submit a patch?