import fire
  from pathlib import Path
  from similarities_helper import similarities, column_similarities
 +from functools import partial
  
- def cosine_similarities(infile, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, from_date=None, to_date=None, tfidf_colname='tf_idf'):
+ def cosine_similarities(infile, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None, tfidf_colname='tf_idf'):
  
-     return similarities(inpath=infile, simfunc=column_similarities, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname)
+     return similarities(infile=infile, simfunc=column_similarities, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases,from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname)
  
 +# change so that these take in an input as an optional argument (for speed, but also for idf).
 +def term_cosine_similarities(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
  
-     return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet',
+ def term_cosine_similarities(outfile, infile='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet', min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
+ 
+     return cosine_similarities(infile,
                                 'term',
                                 outfile,
                                 min_df,
 
              'relative_tf':ds.field('relative_tf').cast('float32'),
              'tf_idf':ds.field('tf_idf').cast('float32')}
  
 -    tfidf_ds = ds.dataset(infile)
+ 
      df = tfidf_ds.to_table(filter=ds_filter,columns=projection)
  
      df = df.to_pandas(split_blocks=True,self_destruct=True)
          else: # tf_fam = tf_weight.Norm05
              df["tf_idf"] = (0.5 + 0.5 * df.relative_tf) * df.idf
  
 -    print("assigning names")
 -    subreddit_names = tfidf_ds.to_table(filter=ds_filter,columns=['subreddit','subreddit_id'])
 -    batches = subreddit_names.to_batches()
 +    return (df, tfidf_ds, ds_filter)
  
+     with Pool(cpu_count()) as pool:
+         chunks = pool.imap_unordered(pull_names,batches) 
+         subreddit_names = pd.concat(chunks,copy=False).drop_duplicates()
+ 
+     subreddit_names = subreddit_names.set_index("subreddit_id")
+     new_ids = df.loc[:,['subreddit_id','subreddit_id_new']].drop_duplicates()
+     new_ids = new_ids.set_index('subreddit_id')
+     subreddit_names = subreddit_names.join(new_ids,on='subreddit_id').reset_index()
+     subreddit_names = subreddit_names.drop("subreddit_id",1)
+     subreddit_names = subreddit_names.sort_values("subreddit_id_new")
+     return(df, subreddit_names)
  
  def pull_names(batch):
      return(batch.to_pandas().drop_duplicates())
      idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1)
  
      # collect the dictionary to make a pydict of terms to indexes
 -    terms = idf.select([term,'week']).distinct() # terms are distinct
 +    terms = idf.select([term]).distinct() # terms are distinct
  
 -    terms = terms.withColumn(term_id,f.row_number().over(Window.partitionBy('week').orderBy(term))) # term ids are distinct
 +    terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct
  
      # make subreddit ids
 -    subreddits = df.select(['subreddit','week']).distinct()
 -    subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.partitionBy("week").orderBy("subreddit")))
 +    subreddits = df.select(['subreddit']).distinct()
 +    subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit")))
  
-     # df = df.cache()
 -    df = df.join(subreddits,on=['subreddit','week'])
 +    df = df.join(subreddits,on=['subreddit'])
  
      # map terms to indexes in the tfs and the idfs
 -    df = df.join(terms,on=[term,'week']) # subreddit-term-id is unique
 +    df = df.join(terms,on=[term]) # subreddit-term-id is unique
  
 -    idf = idf.join(terms,on=[term,'week'])
 +    idf = idf.join(terms,on=[term])
  
      # join on subreddit/term to create tf/dfs indexed by term
      df = df.join(idf, on=[term_id, term,'week'])