def term_cosine_similarities(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
- return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
+
+ return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet',
'term',
outfile,
min_df,
)
def author_cosine_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None):
- return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
+ return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',
'author',
outfile,
min_df,
)
def author_tf_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None):
- return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
+ return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',
'author',
outfile,
min_df,
print("loading matrix")
# mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname)
mat = read_tfidf_matrix(tempdir.name, term_colname, tfidf_colname)
- print('computing similarities')
+ print(f'computing similarities on mat. mat.shape:{mat.shape}')
+ print(f"size of mat is:{mat.data.nbytes}")
sims = simfunc(mat)
del mat
return df
-def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonswf.csv"):
+def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonsfw.csv"):
rankdf = pd.read_csv(path)
included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
return included_subreddits
def tfidf(inpath, outpath, topN, term_colname, exclude, included_subreddits):
return _tfidf_wrapper(build_tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits)
-def tfidf_weekly(inpath, outpath, topN, term_colname, exclude):
- return _tfidf_wrapper(build_weekly_tfidf_dataset, inpath, outpath, topN, term_colname, included_subreddits)
+def tfidf_weekly(inpath, outpath, topN, term_colname, exclude, included_subreddits):
+ return _tfidf_wrapper(build_weekly_tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits)
def tfidf_authors(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
topN=25000):
from itertools import islice
from pathlib import Path
from similarities_helper import *
+from multiprocessing import pool
+def _week_similarities(tempdir, term_colname, week):
+ print(f"loading matrix: {week}")
+ mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week)
+ print('computing similarities')
+ sims = column_similarities(mat)
+ del mat
+
+ names = subreddit_names.loc[subreddit_names.week == week]
+ sims = pd.DataFrame(sims.todense())
+
+ sims = sims.rename({i: sr for i, sr in enumerate(names.subreddit.values)}, axis=1)
+ sims['_subreddit'] = names.subreddit.values
+
+ write_weekly_similarities(outfile, sims, week, names)
#tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet')
def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, included_subreddits = None, topN = 500):
spark.stop()
weeks = sorted(list(subreddit_names.week.drop_duplicates()))
- for week in weeks:
- print(f"loading matrix: {week}")
- mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week)
- print('computing similarities')
- sims = column_similarities(mat)
- del mat
+ # do this step in parallel if we have the memory for it.
+ # should be doable with pool.map
- names = subreddit_names.loc[subreddit_names.week == week]
- sims = pd.DataFrame(sims.todense())
-
- sims = sims.rename({i: sr for i, sr in enumerate(names.subreddit.values)}, axis=1)
- sims['subreddit'] = names.subreddit.values
-
- write_weekly_similarities(outfile, sims, week, names)
+ def week_similarities_helper(week):
+ _week_similarities(tempdir, term_colname, week)
+ with Pool(40) as pool: # maybe it can be done with 40 cores on the huge machine?
+ list(pool.map(weeks,week_similarities_helper))
-def author_cosine_similarities_weekly(outfile, min_df=None , included_subreddits=None, topN=500):
- return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet',
+def author_cosine_similarities_weekly(outfile, min_df=2 , included_subreddits=None, topN=500):
+ return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors_100k.parquet',
outfile,
'author',
min_df,
topN)
def term_cosine_similarities_weekly(outfile, min_df=None, included_subreddits=None, topN=500):
- return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet',
+ return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms_100k.parquet',
outfile,
'term',
min_df,
topN)
if __name__ == "__main__":
- fire.Fire({'author':author_cosine_similarities_weekly,
- 'term':term_cosine_similarities_weekly})
+ fire.Fire({'authors':author_cosine_similarities_weekly,
+ 'terms':term_cosine_similarities_weekly})