## load in the data
#################################
-myuw <- read.csv("../data/2022_winter_COM_481_A_students.csv", stringsAsFactors=FALSE)
+myuw <- read.csv("../data/2024_autumn_COMMLD_570_A_joint_students.csv", stringsAsFactors=FALSE)
current.dir <- getwd()
source("../assessment_and_tracking/track_participation.R")
## class-level variables
gpa.point.value <- 50/(4 - 0.7)
-question.grades <- c("PLUS"=100, "CHECK"=100-gpa.point.value, "MINUS"=100-(gpa.point.value*2))
+## question.grades <- c("GOOD"=100, "FAIR"=100-gpa.point.value, "BAD"=100-(gpa.point.value*2))
+question.grades <- c("GOOD"=100, "SATISFACTORY"=100-gpa.point.value, "POOR"=100-(gpa.point.value*2), "NO MEANINGFUL ANSWER"=0)
missed.question.penalty <- gpa.point.value * 0.2 ## 1/5 of a full point on the GPA scale
## inspect set the absence threashold
ggplot(d) + aes(x=absences) + geom_histogram(binwidth=1, fill="white",color="black")
absence.threshold <- median(d$absences)
-
## inspect and set the questions cutoff
## questions.cutoff <- median(d$num.calls)
## median(d$num.calls)
## questions.cutoff <- nrow(call.list) / nrow(d) ## TODO talk about this
## this is the 95% percentile based on simulation in simulation.R
-questions.cutoff <- 4
+questions.cutoff <- 15
## show the distribution of assessments
table(call.list$assessment)
## helper function to generate average grade minus number of missing
gen.part.grade <- function (x.unique.name) {
q.scores <- question.grades[call.list$assessment[call.list$unique.name == x.unique.name]]
+ print(q.scores)
base.score <- mean(q.scores, na.rm=TRUE)
## number of missing days
missing.in.class.days=missing.in.class.days)
}
-
## create the base grades which do NOT include missing questions
tmp <- do.call("rbind", lapply(d$unique.name, gen.part.grade))
d <- merge(d, tmp)
d.print$unique.name[d.print$unique.name == id],
sep=""))
}
-k