--- /dev/null
+## load in the data
+#################################
+
+case.sessions <- 15
+myuw <- read.csv("../myuw-COM_482_A_autumn_2020_students.csv", stringsAsFactors=FALSE)
+
+## class-level variables
+question.grades <- c("GOOD"=100, "FAIR"=100-(50/3.3), "BAD"=100-(50/(3.3)*2))
+missed.question.penalty <- (50/3.3) * 0.2 ## 1/5 of a full point on the GPA scale
+
+setwd("../")
+source("track_participation.R")
+setwd("case_grades")
+
+rownames(d) <- d$discord.name
+
+## show the distribution of assessments
+table(call.list.full$assessment)
+prop.table(table(call.list.full$assessment))
+table(call.list.full$answered)
+prop.table(table(call.list.full$answered))
+
+total.questions.asked <- nrow(call.list.full)
+
+## create new column with number of questions present
+d$prop.asked <- d$num.calls / d$num.present
+
+## generate statistics using these new variables
+prop.asks.quantiles <- quantile(d$prop.asked, probs=seq(0,1, 0.01))
+prop.asks.quantiles <- prop.asks.quantiles[!duplicated(prop.asks.quantiles)]
+
+## this is generating broken stuff but it's not used for anything
+d$prop.asked.quant <- cut(d$prop.asked, breaks=prop.asks.quantiles,
+ labels=names(prop.asks.quantiles)[1:(length(prop.asks.quantiles)-1)])
+
+## generate grades
+##########################################################
+
+d$part.grade <- NA
+
+## print the median number of questions for (a) everybody and (b)
+## people that have been present 75% of the time
+median(d$num.calls[d$days.absent < 0.25*case.sessions])
+median(d$num.calls)
+
+questions.cutoff <- median(d$num.calls)
+
+## helper function to generate average grade minus number of missing
+gen.part.grade <- function (x.discord.name) {
+ q.scores <- question.grades[call.list$assessment[call.list$discord.name == x.discord.name]]
+ base.score <- mean(q.scores, na.rm=TRUE)
+
+ ## number of missing days
+ missing.days <- nrow(missing.in.class[missing.in.class$discord.name == x.discord.name,])
+
+ ## return the final score
+ data.frame(discord.name=x.discord.name,
+ part.grade=(base.score - missing.days * missed.question.penalty))
+}
+
+tmp <- do.call("rbind", lapply(d$discord.name[d$num.calls >= questions.cutoff], gen.part.grade))
+
+d[as.character(tmp$discord.name), "part.grade"] <- tmp$part.grade
+
+## next handle the folks *under* the median
+
+## first we handle the zeros
+## step 1: first double check the people who have zeros and ensure that they didn't "just" get unlucky"
+d[d$num.calls == 0,]
+
+## set those people to 0 :(
+d$part.grade[d$num.calls == 0] <- 0
+
+## step 2 is to handle folks who got unlucky in the normal way
+tmp <- do.call("rbind", lapply(d$discord.name[is.na(d$part.grade) & d$prop.asked <= median(d$prop.asked)], gen.part.grade))
+d[as.character(tmp$discord.name), "part.grade"] <- tmp$part.grade
+
+## the people who are left are lucky and still undercounted so we'll penalize them
+d[is.na(d$part.grade),]
+penalized.discord.names <- d$discord.name[is.na(d$part.grade)]
+
+## generate the baseline participation grades as per the process above
+tmp <- do.call("rbind", lapply(penalized.discord.names, gen.part.grade))
+d[as.character(tmp$discord.name), "part.grade"] <- tmp$part.grade
+
+## now add "zeros" for every questions that is below the normal
+d[as.character(penalized.discord.names),"part.grade"] <- ((
+ (questions.cutoff - d[as.character(penalized.discord.names),"num.calls"] * 0) +
+ (d[as.character(penalized.discord.names),"num.calls"] * d[as.character(penalized.discord.names),"part.grade"]) )
+ / questions.cutoff)
+
+d[as.character(penalized.discord.names),]
+
+## map part grades back to 4.0 letter scale and points
+d$part.4point <-round((d$part.grade / (50/3.3)) - 2.6, 2)
+
+d[sort.list(d$prop.asked), c("discord.name", "num.calls", "num.present",
+ "prop.asked", "prop.asked.quant", "part.grade", "part.4point",
+ "days.absent")]
+
+d[sort.list(d$part.4point), c("discord.name", "num.calls", "num.present",
+ "prop.asked", "prop.asked.quant", "part.grade", "part.4point",
+ "days.absent")]
+
+
+## writing out data
+quantile(d$num.calls, probs=(0:100*0.01))
+d.print <- merge(d, myuw[,c("StudentNo", "FirstName", "LastName", "UWNetID")],
+ by.x="student.num", by.y="StudentNo")
+write.csv(d.print, file="final_participation_grades.csv")
+
+library(rmarkdown)
+
+for (x.discord.name in d$discord.name) {
+ render(input="student_report_template.Rmd",
+ output_format="html_document",
+ output_file=paste("student_reports/",
+ d.print$UWNetID[d.print$discord.name == x.discord.name],
+ sep=""))
+}
library(ggplot2)
+library(data.table)
gs <- read.delim("student_information.tsv")
d <- gs[,c(2,5)]
colnames(d) <- c("student.num", "discord.name")
-call.list <- do.call("rbind", lapply(list.files(".", pattern="^call_list-.*tsv$"), function (x) {read.delim(x)[,1:3]}))
+call.list <- do.call("rbind", lapply(list.files(".", pattern="^call_list-.*tsv$"), function (x) {read.delim(x)[,1:4]}))
colnames(call.list) <- gsub("_", ".", colnames(call.list))
call.list$day <- as.Date(call.list$timestamp)
## drop calls where the person wasn't present
+call.list.full <- call.list
call.list[!call.list$answered,]
call.list <- call.list[call.list$answered,]
attendance <- unlist(lapply(list.files(".", pattern="^attendance-.*tsv$"), function (x) {d <- read.delim(x); strsplit(d[[2]], ",")}))
-
file.to.attendance.list <- function (x) {
tmp <- read.delim(x)
d.out <- data.frame(discord.name=unlist(strsplit(tmp[[2]], ",")))
lapply(list.files(".", pattern="^attendance-.*tsv$"),
file.to.attendance.list))
+## create list of folks who are missing in class
+missing.in.class <- call.list.full[is.na(call.list.full$answered) |
+ (!is.na(call.list.full$answered) & !call.list.full$answered),
+ c("discord.name", "day")]
+
+missing.in.class <- unique(missing.in.class)
+
+setDT(attendance)
+setkey(attendance, discord.name, day)
+setDT(missing.in.class)
+setkey(missing.in.class, discord.name, day)
+
+## drop presence for people on missing days
+attendance[missing.in.class,]
+attendance <- as.data.frame(attendance[!missing.in.class,])
+
attendance.counts <- data.frame(table(attendance$discord.name))
colnames(attendance.counts) <- c("discord.name", "num.present")
by="discord.name")
days.list <- lapply(unique(attendance$day), function (day) {
- day.total <- table(call.list$day == day)[["TRUE"]]
+ day.total <- table(call.list.full$day == day)[["TRUE"]]
lapply(d$discord.name, function (discord.name) {
num.present <- nrow(attendance[attendance$day == day & attendance$discord.name == discord.name,])
+ if (num.present/day.total > 1) {print(day)}
data.frame(discord.name=discord.name,
days.present=(num.present/day.total))
})
d <- merge(d, attendance.days,
all.x=TRUE, all.y=TRUE, by="discord.name")
+
d[sort.list(d$days.absent), c("discord.name", "num.calls", "days.absent")]
## make some visualizations of whose here/not here