]> code.communitydata.science - coldcallbot-discord.git/commitdiff
code to create final case discussion grades
authorBenjamin Mako Hill <mako@atdot.cc>
Sun, 6 Mar 2022 04:51:15 +0000 (20:51 -0800)
committerBenjamin Mako Hill <mako@atdot.cc>
Sat, 28 Sep 2024 23:13:14 +0000 (16:13 -0700)
This still needs to be check over but this is new code to build the
final grades. Current threshold for minimum questions comes from 1000
simulated classes (simulation.R).

assessment_and_tracking/compute_final_case_grades.R
assessment_and_tracking/simulation.R [new file with mode: 0644]
assessment_and_tracking/student_report_template.Rmd

index b26270b6be7809661ee16581ad2eb73bd62b2ac2..22dae474d3429f83e57c6d10bcc3664edbf8fd11 100644 (file)
 ## load in the data
 #################################
+myuw <- read.csv("../data/2022_winter_COM_481_A_students.csv", stringsAsFactors=FALSE)
 
-myuw <- read.csv("myuw-COMMLD_570_A_spring_2021_students.csv", stringsAsFactors=FALSE)
+current.dir <- getwd()
+source("../assessment_and_tracking/track_participation.R")
+setwd(current.dir)
+
+rownames(d) <- d$unique.name
+call.list$timestamp <- as.Date(call.list$timestamp)
 
 ## class-level variables
-question.grades <- c("GOOD"=100, "FAIR"=100-(50/3.3), "WEAK"=100-(50/(3.3)*2))
+question.grades <- c("PLUS"=100, "CHECK"=100-(50/3.3), "MINUS"=100-(50/(3.3)*2))
+missed.question.penalty <- (50/3.3) * 0.2 ## 1/5 of a full point on the GPA scale
 
-source("../assessment_and_tracking/track_participation.R")
-setwd("case_grades")
+## inspect set the absence threashold
+ggplot(d) + aes(x=absences) + geom_histogram(binwidth=1, fill="white",color="black")
+## absence.threshold <- median(d$absences)
+absence.threshold <- 4 ## TODO talk about this
 
-rownames(d) <- d$unique.name
+## inspect and set the questions cutoff
+## questions.cutoff <- median(d$num.calls)
+## median(d$num.calls)
+## questions.cutoff <- nrow(call.list) / nrow(d) ## TODO talk about this
+## first these are the people were were not called simply because they got unlucky
+
+ ## this is the 95% percentile based on simulation in simulation.R
+questions.cutoff <- 4
 
 ## show the distribution of assessments
 table(call.list$assessment)
 prop.table(table(call.list$assessment))
-table(call.list$answered)
-prop.table(table(call.list$answered))
+
+table(call.list.full$answered)
+prop.table(table(call.list.full$answered))
 
 total.questions.asked <- nrow(call.list)
 
-## generate grades
+## find out how man questions folks have present/absent for
 ##########################################################
+calls.per.day <- data.frame(day=as.Date(names(table(call.list$timestamp))),
+                            questions.asked=as.numeric(table(call.list$timestamp)))
+
+## function to return the numbers of calls present for or zero if they
+## were absent
+calls.for.student.day <- function (day, student.id) {
+    if (any(absence$unique.name == student.id & absence$date.absent == day)) {
+        return(0)
+    } else {
+        return(calls.per.day$questions.asked[calls.per.day$day == day])
+    }
+}
+
+compute.questions.present.for.student <- function (student.id) {
+    sum(unlist(lapply(unique(calls.per.day$day), calls.for.student.day, student.id)))
+}
 
-d$part.grade <- NA
+## create new column with number of questions present
+d$q.present <- unlist(lapply(d$unique.name, compute.questions.present.for.student))
+d$prop.asked <- d$num.calls / d$q.present
+
+## generate statistics using these new variables
+prop.asks.quantiles <- quantile(d$prop.asked, probs=seq(0,1, 0.01))
+prop.asks.quantiles <- prop.asks.quantiles[!duplicated(prop.asks.quantiles)]
+
+d$prop.asked.quant <- cut(d$prop.asked, right=FALSE, breaks=c(prop.asks.quantiles, 1),
+    labels=names(prop.asks.quantiles)[1:(length(prop.asks.quantiles))])
+
+## generate grades
+##########################################################
 
 ## print the median number of questions for (a) everybody and (b)
 ## people that have been present 75% of the time
 median(d$num.calls)
 
-questions.cutoff <- median(d$num.calls)
-
 ## helper function to generate average grade minus number of missing
 gen.part.grade <- function (x.unique.name) {
     q.scores <- question.grades[call.list$assessment[call.list$unique.name == x.unique.name]]
     base.score <- mean(q.scores, na.rm=TRUE)
 
     ## number of missing days
-    # missing.days <- nrow(missing.in.class[missing.in.class$unique.name == x.unique.name,])
+    missing.in.class.days <- nrow(missing.in.class[missing.in.class$unique.name == x.unique.name,])
 
     ## return the final score
     data.frame(unique.name=x.unique.name,
-               part.grade=(base.score))
+               base.grade=base.score,
+               missing.in.class.days=missing.in.class.days)
 }
 
 
+## create the base grades which do NOT include missing questions
 tmp <- do.call("rbind", lapply(d$unique.name, gen.part.grade))
+d <- merge(d, tmp)
+rownames(d) <- d$unique.name
+
+## apply the penality for number of days we called on them and they were gone
+d$part.grade <- d$base.grade - d$missing.in.class.days * missed.question.penalty
+d$part.grade.orig <- d$part.grade
+
+## first we handle the zeros
+## step 1: first double check the people who have zeros and ensure that they didn't "just" get unlucky"
+d[d$num.calls == 0,]
+
+## set those people to 0 :(
+d[d$num.calls == 0]
+d$part.grade[d$num.calls == 0] <- 0
 
-d[as.character(tmp$unique.name), "part.grade"] <- tmp$part.grade
+## step 2: identify the people who were were not asked "enough" questions but were unlucky/lucky
+## penalized.unique.names <- d$unique.name[d$num.calls < median(d$num.calls) & d$absences > median(d$absences)]
 
-## generate the baseline participation grades as per the process above
+## first these are the people were were not called simply because they got unlucky
+d[d$num.calls < questions.cutoff & d$absences < absence.threshold,]
 
+## first these are the people were were not called simply because they got unlucky
+penalized.unique.names <- d$unique.name[d$num.calls < questions.cutoff & d$absences > absence.threshold]
+d[d$unique.name %in% penalized.unique.names,]
+
+## now add "zeros" for every questions that is below the normal
+d[as.character(penalized.unique.names),"part.grade"] <- ((
+    (questions.cutoff - d[as.character(penalized.unique.names),"num.calls"] * 0) +
+    (d[as.character(penalized.unique.names),"num.calls"] * d[as.character(penalized.unique.names),"part.grade"]) )
+    / questions.cutoff)
+
+d[as.character(penalized.unique.names),]
+
+## TODO ensure this is right. i think it is
 ## map part grades back to 4.0 letter scale and points
-d$part.4point <-round((d$part.grade / (50/3.3)) - 2.6, 2)
+d$part.4point <- round((d$part.grade / (50/3.3)) - 2.6, 2)
 
-d[sort.list(d$part.4point),]
+d[sort.list(d$part.4point, decreasing=TRUE),
+  c("unique.name", "short.name", "num.calls", "absences", "part.4point")]
 
 
-## writing out data
+## writing out data to CSV
 d.print <- merge(d, myuw[,c("StudentNo", "FirstName", "LastName", "UWNetID")],
-           by.x="student.num", by.y="StudentNo")
-write.csv(d.print, file="final_participation_grades.csv")
-
-## library(rmarkdown)
-
-## for (x.unique.name in d$unique.name) {
-##     render(input="../../assessment_and_tracking/student_report_template.Rmd",
-##            output_format="html_document",
-##            output_file=paste("../data/case_grades/student_reports/",
-##                              d.print$UWNetID[d.print$unique.name == x.unique.name],
-##                              sep=""))
-## }
+                 by.x="unique.name", by.y="StudentNo")
+write.csv(d.print, file="../data/final_participation_grades.csv")
+
+library(rmarkdown)
+
+for (id in d$unique.name) {
+    render(input="student_report_template.Rmd",
+           output_format="html_document",
+           output_file=paste("../data/case_grades/",
+                             d.print$unique.name[d.print$unique.name == id],
+                             sep=""))
+}
diff --git a/assessment_and_tracking/simulation.R b/assessment_and_tracking/simulation.R
new file mode 100644 (file)
index 0000000..7134bef
--- /dev/null
@@ -0,0 +1,24 @@
+weight.fac <- 2
+num.calls <- 373
+num.students <- 76
+
+gen.calls.per.students <- function (x) {
+    raw.weights <<- rep(1, num.students)
+    names(raw.weights) <- seq(1, num.students)
+
+    table(sapply(1:num.calls, function (i) {
+        probs <- raw.weights / sum(raw.weights)
+        selected <- sample(names(raw.weights), 1, prob=probs)
+        ## update the raw.weights
+        raw.weights[selected] <<- raw.weights[selected] / weight.fac
+                                        #print(raw.weights)
+        return(selected)
+    }))
+}
+
+
+simulated.call.list <- unlist(lapply(1:1000, gen.calls.per.students))
+hist(simulated.call.list)
+
+quantile(simulated.call.list, probs=seq(0,1,by=0.01))
+quantile(simulated.call.list, probs=0.05)
index a0b2145d5378ec57300dd6af68006dd54613ee20..866b1e0d111599258c7287b02cbdfeb38bc83866 100644 (file)
@@ -1,22 +1,19 @@
-**Student Name:** `r paste(d.print[d.print$discord.name == x.discord.name, c("FirstName", "LastName")])`
+**Student Name:** `r paste(d.print[d.print$unique.name == id, c("LastName", "FirstName")])` (`r id`)
 
-**Discord Name:** `r d.print[d.print$discord.name == x.discord.name, c("discord.name")]`
+**Participation grade:** `r d.print$part.4point[d.print$unique.name == id]`
 
-**Participation grade:** `r d.print$part.4point[d.print$discord.name == x.discord.name]`
+**Questions asked:** `r d.print[d$unique.name == id, "num.calls"]`
 
-**Questions asked:** `r d.print[d$discord.name == x.discord.name, "prev.questions"]`
+**Days Absent:** `r d.print[d.print$unique.name == id, "absences"]` / `r length(unique(as.Date(unique(call.list$timestamp))))`
 
-**Days Absent:** `r d.print[d.print$discord.name == x.discord.name, "days.absent"]` / `r case.sessions`
+**Missing in class days:** `r d.print[d$unique.name == id, "missing.in.class.days"]` (base grade lowered by 0.2 per day)
 
 **List of questions:**
 
 ```{r echo=FALSE}
-call.list[call.list$discord.name == x.discord.name,]
+call.list[call.list$unique.name == id,]
 ```
 
-**Luckiness:** `r d.print[d.print$discord.name == x.discord.name, "prop.asked.quant"]`
-
-If you a student has a luckiness over 50% that means that they were helped by the weighting of the system and/or got lucky. We did not penalize *any* students with a luckiness under 50% for absences.
 
 
 

Community Data Science Collective || Want to submit a patch?