1 library(matrixStats) # for numerically stable logsumexps
3 options(amelia.parallel="no",
8 source("measerr_methods_2.R") ## for my more generic function.
10 run_simulation_depvar <- function(df, result, outcome_formula = y ~ x + z, coder_formulas = list(y.obs.0 ~ 1, y.obs.1 ~ 1), proxy_formula = w_pred ~ y.obs.1+y.obs.0+y){
11 (accuracy <- df[,mean(w_pred==y)])
12 result <- append(result, list(accuracy=accuracy))
13 (error.cor.z <- cor(df$x, df$w_pred - df$z))
14 (error.cor.x <- cor(df$x, df$w_pred - df$y))
15 (error.cor.y <- cor(df$y, df$y - df$w_pred))
16 result <- append(result, list(error.cor.x = error.cor.x,
17 error.cor.z = error.cor.z,
18 error.cor.y = error.cor.y))
20 model.null <- glm(y~1, data=df,family=binomial(link='logit'))
21 (model.true <- glm(y ~ x + z, data=df,family=binomial(link='logit')))
22 (lik.ratio <- exp(logLik(model.true) - logLik(model.null)))
24 true.ci.Bxy <- confint(model.true)['x',]
25 true.ci.Bzy <- confint(model.true)['z',]
28 result <- append(result, list(lik.ratio=lik.ratio))
30 result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
31 Bzy.est.true=coef(model.true)['z'],
32 Bxy.ci.upper.true = true.ci.Bxy[2],
33 Bxy.ci.lower.true = true.ci.Bxy[1],
34 Bzy.ci.upper.true = true.ci.Bzy[2],
35 Bzy.ci.lower.true = true.ci.Bzy[1]))
37 (model.naive <- lm(y~w_pred+z, data=df))
39 naive.ci.Bxy <- confint(model.naive)['w_pred',]
40 naive.ci.Bzy <- confint(model.naive)['z',]
42 result <- append(result, list(Bxy.est.naive=coef(model.naive)['w_pred'],
43 Bzy.est.naive=coef(model.naive)['z'],
44 Bxy.ci.upper.naive = naive.ci.Bxy[2],
45 Bxy.ci.lower.naive = naive.ci.Bxy[1],
46 Bzy.ci.upper.naive = naive.ci.Bzy[2],
47 Bzy.ci.lower.naive = naive.ci.Bzy[1]))
51 loa0.feasible <- glm(y.obs.0 ~ x + z, data = df[!(is.na(y.obs.0))], family=binomial(link='logit'))
53 loa0.ci.Bxy <- confint(loa0.feasible)['x',]
54 loa0.ci.Bzy <- confint(loa0.feasible)['z',]
56 result <- append(result, list(Bxy.est.loa0.feasible=coef(loa0.feasible)['x'],
57 Bzy.est.loa0.feasible=coef(loa0.feasible)['z'],
58 Bxy.ci.upper.loa0.feasible = loa0.ci.Bxy[2],
59 Bxy.ci.lower.loa0.feasible = loa0.ci.Bxy[1],
60 Bzy.ci.upper.loa0.feasible = loa0.ci.Bzy[2],
61 Bzy.ci.lower.loa0.feasible = loa0.ci.Bzy[1]))
64 ## df.loa0.mle <- copy(df)
65 ## df.loa0.mle[,y:=y.obs.0]
66 ## loa0.mle <- measerr_mle_dv(df.loa0.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
67 ## fisher.info <- solve(loa0.mle$hessian)
68 ## coef <- loa0.mle$par
69 ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
70 ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
72 ## result <- append(result, list(Bxy.est.loa0.mle=coef['x'],
73 ## Bzy.est.loa0.mle=coef['z'],
74 ## Bxy.ci.upper.loa0.mle = ci.upper['x'],
75 ## Bxy.ci.lower.loa0.mle = ci.lower['x'],
76 ## Bzy.ci.upper.loa0.mle = ci.upper['z'],
77 ## Bzy.ci.lower.loa0.mle = ci.upper['z']))
79 loco.feasible <- glm(y.obs.0 ~ x + z, data = df[(!is.na(y.obs.0)) & (y.obs.1 == y.obs.0)], family=binomial(link='logit'))
81 loco.feasible.ci.Bxy <- confint(loco.feasible)['x',]
82 loco.feasible.ci.Bzy <- confint(loco.feasible)['z',]
84 result <- append(result, list(Bxy.est.loco.feasible=coef(loco.feasible)['x'],
85 Bzy.est.loco.feasible=coef(loco.feasible)['z'],
86 Bxy.ci.upper.loco.feasible = loco.feasible.ci.Bxy[2],
87 Bxy.ci.lower.loco.feasible = loco.feasible.ci.Bxy[1],
88 Bzy.ci.upper.loco.feasible = loco.feasible.ci.Bzy[2],
89 Bzy.ci.lower.loco.feasible = loco.feasible.ci.Bzy[1]))
92 ## df.double.proxy <- copy(df)
93 ## df.double.proxy <- df.double.proxy[,y.obs:=NA]
94 ## df.double.proxy <- df.double.proxy[,y:=NA]
96 ## double.proxy.mle <- measerr_irr_mle_dv(df.double.proxy, outcome_formula=y~x+z, outcome_family=binomial(link='logit'), coder_formulas=list(y.obs.0 ~ y), proxy_formula=w_pred ~ y.obs.0 + y, proxy_family=binomial(link='logit'))
97 ## print(double.proxy.mle$hessian)
98 ## fisher.info <- solve(double.proxy.mle$hessian)
99 ## coef <- double.proxy.mle$par
100 ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
101 ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
103 ## result <- append(result, list(Bxy.est.double.proxy=coef['x'],
104 ## Bzy.est.double.proxy=coef['z'],
105 ## Bxy.ci.upper.double.proxy = ci.upper['x'],
106 ## Bxy.ci.lower.double.proxy = ci.lower['x'],
107 ## Bzy.ci.upper.double.proxy = ci.upper['z'],
108 ## Bzy.ci.lower.double.proxy = ci.lower['z']))
111 df.triple.proxy <- copy(df)
112 df.triple.proxy <- df.triple.proxy[,y.obs:=NA]
113 df.triple.proxy <- df.triple.proxy[,y:=NA]
115 triple.proxy.mle <- measerr_irr_mle_dv(df.triple.proxy, outcome_formula=outcome_formula, outcome_family=binomial(link='logit'), coder_formulas=coder_formulas, proxy_formula=proxy_formula, proxy_family=binomial(link='logit'))
116 print(triple.proxy.mle$hessian)
117 fisher.info <- solve(triple.proxy.mle$hessian)
119 coef <- triple.proxy.mle$par
120 ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
121 ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
123 result <- append(result, list(Bxy.est.triple.proxy=coef['x'],
124 Bzy.est.triple.proxy=coef['z'],
125 Bxy.ci.upper.triple.proxy = ci.upper['x'],
126 Bxy.ci.lower.triple.proxy = ci.lower['x'],
127 Bzy.ci.upper.triple.proxy = ci.upper['z'],
128 Bzy.ci.lower.triple.proxy = ci.lower['z']))
130 ## df.loco.mle <- copy(df)
131 ## df.loco.mle[,y.obs:=NA]
132 ## df.loco.mle[(y.obs.0)==(y.obs.1),y.obs:=y.obs.0]
133 ## df.loco.mle[,y.true:=y]
134 ## df.loco.mle[,y:=y.obs]
135 ## print(df.loco.mle[!is.na(y.obs.1),mean(y.true==y,na.rm=TRUE)])
136 ## loco.mle <- measerr_mle_dv(df.loco.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
137 ## fisher.info <- solve(loco.mle$hessian)
138 ## coef <- loco.mle$par
139 ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
140 ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
142 ## result <- append(result, list(Bxy.est.loco.mle=coef['x'],
143 ## Bzy.est.loco.mle=coef['z'],
144 ## Bxy.ci.upper.loco.mle = ci.upper['x'],
145 ## Bxy.ci.lower.loco.mle = ci.lower['x'],
146 ## Bzy.ci.upper.loco.mle = ci.upper['z'],
147 ## Bzy.ci.lower.loco.mle = ci.lower['z']))
151 ## my implementatoin of liklihood based correction
152 mod.zhang <- zhang.mle.dv(df.loco.mle)
153 coef <- coef(mod.zhang)
154 ci <- confint(mod.zhang,method='quad')
156 result <- append(result,
157 list(Bxy.est.zhang = coef['Bxy'],
158 Bxy.ci.upper.zhang = ci['Bxy','97.5 %'],
159 Bxy.ci.lower.zhang = ci['Bxy','2.5 %'],
160 Bzy.est.zhang = coef['Bzy'],
161 Bzy.ci.upper.zhang = ci['Bzy','97.5 %'],
162 Bzy.ci.lower.zhang = ci['Bzy','2.5 %']))
168 # amelia says use normal distribution for binary variables.
170 amelia.out.k <- amelia(df.loco.mle, m=200, p2s=0, idvars=c('y','ystar','w','y.obs.1','y.obs.0','y.true'))
171 mod.amelia.k <- zelig(y.obs~x+z, model='ls', data=amelia.out.k$imputations, cite=FALSE)
172 (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
173 est.x.mi <- coefse['x','Estimate']
174 est.x.se <- coefse['x','Std.Error']
175 result <- append(result,
176 list(Bxy.est.amelia.full = est.x.mi,
177 Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
178 Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
181 est.z.mi <- coefse['z','Estimate']
182 est.z.se <- coefse['z','Std.Error']
184 result <- append(result,
185 list(Bzy.est.amelia.full = est.z.mi,
186 Bzy.ci.upper.amelia.full = est.z.mi + 1.96 * est.z.se,
187 Bzy.ci.lower.amelia.full = est.z.mi - 1.96 * est.z.se
192 message("An error occurred:\n",e)
193 result$error <- paste0(result$error,'\n', e)
195 ## mle.irr <- measerr_irr_mle( df, outcome_formula = outcome_formula, rater_formula = rater_formula, proxy_formula=proxy_formula, truth_formula=truth_formula)
197 ## fisher.info <- solve(mle.irr$hessian)
198 ## coef <- mle.irr$par
199 ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
200 ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
202 ## result <- append(result,
203 ## list(Bxy.est.mle = coef['x'],
204 ## Bxy.ci.upper.mle = ci.upper['x'],
205 ## Bxy.ci.lower.mle = ci.lower['x'],
206 ## Bzy.est.mle = coef['z'],
207 ## Bzy.ci.upper.mle = ci.upper['z'],
208 ## Bzy.ci.lower.mle = ci.lower['z']))