5 df <- data.table(read_feather("example_2_simulation.feather"))
7 x.naive <- df[,.(N, m, Bxy, Bxy.est.naive, Bxy.ci.lower.naive, Bxy.ci.upper.naive)]
8 x.naive <- x.naive[,':='(true.in.ci = as.integer((Bxy >= Bxy.ci.lower.naive) & (Bxy <= Bxy.ci.upper.naive)),
9 zero.in.ci = (0 >= Bxy.ci.lower.naive) & (0 <= Bxy.ci.upper.naive),
10 bias = Bxy - Bxy.est.naive,
11 sign.correct = as.integer(sign(Bxy) == sign(Bxy.est.naive)))]
13 x.naive.plot <- x.naive[,.(p.true.in.ci = mean(true.in.ci),
14 mean.bias = mean(bias),
15 p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
21 g.naive <- df[,.(N, m, Bgy, Bgy.est.naive, Bgy.ci.lower.naive, Bgy.ci.upper.naive)]
22 g.naive <- g.naive[,':='(true.in.ci = as.integer((Bgy >= Bgy.ci.lower.naive) & (Bgy <= Bgy.ci.upper.naive)),
23 zero.in.ci = (0 >= Bgy.ci.lower.naive) & (0 <= Bgy.ci.upper.naive),
24 bias = Bgy - Bgy.est.naive,
25 sign.correct = as.integer(sign(Bgy) == sign(Bgy.est.naive)))]
27 g.naive.plot <- g.naive[,.(p.true.in.ci = mean(true.in.ci),
28 mean.bias = mean(bias),
29 p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
37 x.amelia.full <- x.amelia.full[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.amelia.full) & (Bxy.est.true <= Bxy.ci.upper.amelia.full),
38 zero.in.ci = (0 >= Bxy.ci.lower.amelia.full) & (0 <= Bxy.ci.upper.amelia.full),
39 bias = Bxy.est.true - Bxy.est.amelia.full,
40 sign.correct = sign(Bxy.est.true) == sign(Bxy.est.amelia.full))]
42 x.amelia.full.plot <- x.amelia.full[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
43 mean.bias = mean(bias),
44 p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
46 method='Multiple imputation'
52 g.amelia.full <- df[,.(N, m, Bgy.est.true, Bgy.est.amelia.full, Bgy.ci.lower.amelia.full, Bgy.ci.upper.amelia.full)]
53 g.amelia.full <- g.amelia.full[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.amelia.full) & (Bgy.est.true <= Bgy.ci.upper.amelia.full),
54 zero.in.ci = (0 >= Bgy.ci.lower.amelia.full) & (0 <= Bgy.ci.upper.amelia.full),
55 bias = Bgy.est.amelia.full - Bgy.est.true,
56 sign.correct = sign(Bgy.est.true) == sign(Bgy.est.amelia.full))]
58 g.amelia.full.plot <- g.amelia.full[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
59 mean.bias = mean(bias),
60 p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
62 method='Multiple imputation'
69 x.amelia.nok <- df[,.(N, m, Bxy.est.true, Bxy.est.amelia.nok, Bxy.ci.lower.amelia.nok, Bxy.ci.upper.amelia.nok)]
70 x.amelia.nok <- x.amelia.nok[,':='(true.in.ci = (Bxy.est.true >= Bxy.ci.lower.amelia.nok) & (Bxy.est.true <= Bxy.ci.upper.amelia.nok),
71 zero.in.ci = (0 >= Bxy.ci.lower.amelia.nok) & (0 <= Bxy.ci.upper.amelia.nok),
72 bias = Bxy.est.amelia.nok - Bxy.est.true,
73 sign.correct = sign(Bxy.est.true) == sign(Bxy.est.amelia.nok))]
75 x.amelia.nok.plot <- x.amelia.nok[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
76 mean.bias = mean(bias),
77 p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
79 method='Multiple imputation (Classifier features unobserved)'
83 g.amelia.nok <- df[,.(N, m, Bgy.est.true, Bgy.est.amelia.nok, Bgy.ci.lower.amelia.nok, Bgy.ci.upper.amelia.nok)]
84 g.amelia.nok <- g.amelia.nok[,':='(true.in.ci = (Bgy.est.true >= Bgy.ci.lower.amelia.nok) & (Bgy.est.true <= Bgy.ci.upper.amelia.nok),
85 zero.in.ci = (0 >= Bgy.ci.lower.amelia.nok) & (0 <= Bgy.ci.upper.amelia.nok),
86 bias = Bgy.est.amelia.nok - Bgy.est.true,
87 sign.correct = sign(Bgy.est.true) == sign(Bgy.est.amelia.nok))]
89 g.amelia.nok.plot <- g.amelia.nok[,.(p.true.in.ci = mean(as.integer(true.in.ci)),
90 mean.bias = mean(bias),
91 p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))),
93 method='Multiple imputation (Classifier features unobserved)'
98 plot.df <- rbindlist(list(x.naive.plot,g.naive.plot,x.amelia.full.plot,g.amelia.full.plot,x.amelia.nok.plot,g.amelia.nok.plot))
100 ggplot(plot.df,aes(y=N,x=m,color=p.sign.correct)) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c() + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size")
102 ggplot(plot.df,aes(y=N,x=m,color=mean.bias)) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c() + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size")